
University of Colorado - Boulder

APPM 3310

Matrix Methods — Fall 2024

Final Report - SVD Image Compression

Sam Walker
Pete Walker

Ian Grooms
Section: 002 (11:15-12:05)

Wednesday, December 11, 2024

Contents

1 Abstract 2

2 Attribution 2

3 Introduction 2

4 Understanding SVD 3
4.1 Performing SVD Example . 3
4.2 Programming SVD . 4
4.3 Small Singular Value Removal . 4
4.4 Singular Value Removal Effect on File Size . 6

5 Our Implementation 7
5.1 Understanding File Size . 7
5.2 File Types . 7
5.3 Calculating File Size Programmatically . 8
5.4 Kodak Image Set . 8
5.5 Performing Image Reconstruction with SVD . 8

6 Results 9
6.1 Comparing SVD to BMP . 9
6.2 Comparing SVD to PNG . 10
6.3 Comparing SVD to JPG . 11
6.4 Limits of SVD Image Compression . 11

7 Conclusion 13

A Appendix 14
A.1 Math . 14

A.1.1 Finding Eigenvalues for SVD Example . 14
A.2 Figures . 15

A.2.1 Kodak Benchmark Numbers . 15
A.2.2 Image Reconstruction Example Output . 16

A.3 Code . 16
A.3.1 Custom SVD Implementation . 16
A.3.2 Reconstruction Example . 17
A.3.3 Expected File Size . 17
A.3.4 Compare SVD Implementations . 18
A.3.5 Main Image Reconstruction . 18

1

Abstract
Singular Value Decomposition (SVD) is a powerful mathematical tool used in various fields for data anal-

ysis, dimensionality reduction, and image compression. In this report, we explore the application of SVD for
compressing images by isolating and retaining the most significant information in RGB image matrices while
discarding less essential components. Although SVD initially increases storage requirements by decompos-
ing each color channel into three matrices (left singular, singular values, and right singular), the technique
enables significant size reduction by approximating the original image with fewer singular values. Our study
compares SVD-based compression with conventional image formats such as BMP, PNG, and JPG to evalu-
ate its efficiency and effectiveness. Beyond image compression, SVD has numerous applications in fields like
natural language processing, facial recognition, and noise reduction, Murthy, 2020. The results demonstrate
the trade-offs between compression quality and data storage, offering insights into SVD’s potential in image
processing and beyond.

Attribution
Throughout the project, Pete Walker performed all mathematical derivations, while Sam Walker imple-

mented the coding for the project. Both contributed equally to conducting research, preparing the report,
and collaboratively communicating ideas throughout the project.

Introduction
Singular Value Decomposition (SVD) is a fundamental concept in linear algebra, widely used for analyzing

and simplifying data in various applications. SVD decomposes a matrix into three components: the left
singular matrix, the singular value matrix, and the right singular matrix. This decomposition reveals the
underlying structure of the data and allows for efficient manipulation, such as dimensionality reduction and
noise filtering.

In this report, we focus on applying SVD to image compression. Digital images are typically represented
as matrices of pixel values for each of the three color channels: red, green, and blue (RGB). By applying
SVD to these RGB matrices, we can isolate the most critical singular values, which contain the majority of
the image’s information. By discarding the less significant singular values, we can approximate the original
image with reduced storage requirements, albeit with some loss in quality. However, it is important to
note that SVD initially increases storage size by transforming the original three RGB matrices into nine
matrices—three for each color channel.

Our goal is to evaluate SVD-based compression by comparing it with standard image compression meth-
ods such as BMP, PNG, and JPG. The following sections will delve into the methodology, results, and
conclusions of our investigation into SVD-based image compression.

2

Understanding SVD

Performing SVD Example

We found the following example online for our own guidance through SVD, “SVD Example”, n.d.:
Given the matrix A:

A =

[
3 2 2
2 3 −2

]
We want to find the SVD decomposition of the above matrix, which will have the form A = UΣV T ,

where U and V T are both orthogonal matrices, and Σ is a diagonal matrix containing the singular values of
A.

We start by finding the eigenvalues of AAT

AAT =

[
17 8
8 17

]
So now:

(17− λ)2 − 64 = 0
(λ− 9)(λ− 25) = 0

And the singular values are the square roots of the eigenvalues of this AAT matrix, so we now have σ1 = 5
and σ2 = 3. Note that by convention, we order the singular values by size here, with the largest first. This
will become relevant later when we start using the SVD to reduce the amount of data involved in storage.

With the singular values, we now have Σ:

Σ =

[
5 0 0
0 3 0

]
The next step in getting the full SVD is to get the right singular vectors, (the orthonormal vectors of

ATA) which are obtained by finding the orthonormal vectors ATA. See Appendix A.1.1 for this full process.
This returns the following matrix:

V T =


1√
2

1√
18

2
3

1√
2

−1√
18

−2
3

0 4√
18

−1
3


Now, we just need to find the left singular vectors. At this point, these can be found using the following

formula:

ui =
1
σAvi

This then yields the following:

U =

[
1√
2

1√
2

1√
2

−1√
2

]

And now we have the SVD: A = UΣV T , or in its full glory:

A =

[
3 2 2
2 3 −2

]
=

[
1√
2

1√
2

1√
2

−1√
2

] [
5 0 0
0 3 0

]
1√
2

1√
18

2
3

1√
2

−1√
18

−2
3

0 4√
18

−1
3



3

Programming SVD

For this part of the project, we developed our own implementation of the Singular Value Decomposition
(SVD) function, drawing inspiration from the example outlined in the previous section. The custom SVD
function is detailed in Appendix A.3.1. After implementing the function, we compared its input and output to
the results produced by NumPy’s built-in linalg.svd function, using the code provided in Appendix A.3.4.

While our implementation closely follows the theoretical steps of SVD, some modifications were made to
account for computational limitations and efficiencies. In theoretical SVD, singular values (σi) are derived
by solving for the eigenvalues of AAT or ATA, which involve determinant calculations. However, direct
computation of determinants or eigenvalues for large matrices can be computationally expensive and nu-
merically unstable, especially for high-dimensional data. To address this, our implementation avoids direct
determinant calculations and instead relies on NumPy’s np.linalg.eig function to compute eigenvalues
and eigenvectors efficiently.

Another consideration is the sorting and normalization of singular values and their corresponding singular
vectors. Our code explicitly sorts the singular values in descending order using NumPy’s argsort function
and reorders the columns of the U and V matrices accordingly. This step ensures consistency in the output
format and aligns with the results of NumPy’s linalg.svd function.

Additionally, the computation of the left singular vectors (U) leverages the relationship U = 1
σi
Avi,

where vi is a right singular vector. This avoids directly constructing U from the eigenvectors of AAT , which
would require additional computation. The normalization of the singular vectors further ensures that the
results conform to the expected properties of orthogonal matrices.

The comparison between our custom implementation and NumPy’s built-in linalg.svd function showed
that both methods produced identical results in terms of accuracy. However, our implementation was ap-
proximately five times slower than NumPy’s version, as NumPy leverages optimized low-level libraries (such
as LAPACK) for linear algebra computations. Despite the performance difference, the correctness of our
implementation demonstrates a solid understanding of the underlying mathematics and how computational
workarounds can be used to achieve the same results efficiently.

Given these results, we felt confident in leveraging NumPy’s linalg.svd function for the remainder of
the project. This allowed us to focus on analyzing the results of SVD rather than the computational overhead
of performing the decomposition itself.

Small Singular Value Removal

Now that we better understand SVD, we can move on to the aspects of SVD that make it useful for data
compression. Namely, due to the way that SVD recreates the original matrix, if small singular values are
assumed to be 0, the overall effect on the original matrix is minimal. We will examine this here:

Let us look at the singular value matrix we found above: The smallest singular value here was σ2 = 3,
which was not much smaller than the largest, σ1 = 5. However, we can still analyze the formatting after
setting σ2 = 0:

σ2 = 0 → Σ′ =

[
5 0 0
0 0 0

]
And now, A′ = UΣ′V T

Where A’ is used to denote the fact that we are now approximating the original matrix A, using less data
to do so. In the expanded form, the prime symbol goes on the Σ matrix to denote the same thing.

A′ =

[
1√
2

1√
2

1√
2

−1√
2

] [
5 0 0
0 0 0

]
1√
2

1√
18

2
3

1√
2

−1√
18

−2
3

0 4√
18

−1
3


But now, the strength of removing small singular values can be seen: many of the entries in U and V T

can be clearly seen to only ever multiply by zero, and therefore are useless. In fact, the construction of A’
can be entirely rewritten, simplified down to:

4

A′ =

[
1√
2
1√
2

] [
5 0

] [1√
2

1√
18

2
3

1√
2

−1√
18

−2
3

]

In doing so, we are able to attempt to recreate the true A matrix, although with some significant error
in this case, due to the relatively large size of the singular value we set to zero. We can now compare these
two matrices, A and A’:

A =

[
3 2 2
2 3 −2

]
A′ =

[
2.5 2.5 0
2.5 2.5 0

]
Clearly, the amount of error here makes this almost useless in comparison.
We will now examine small value removal in a more helpful scenario. By creating a random 5x5 matrix

with values from 0 to 255 (roughly simulating a third of an RGB matrix), we will see that the last singular
value here is actually significantly less than the largest of the singular values.

Figure 1 SVD Reconstruction example from Appendix A.3.2

Here, the largest singular value is 780, whereas the smallest is around 12.9. The ratio between these
singular values is around 60:1, whereas in the previous example, it was 5:3. Let us now examine the effect
this lower ratio has on the accuracy of A’, labeled as the difference matrix (A - A’) in Figure 1:

The maximum difference was just over 5.7, with over half of the difference values being less than 2 in
magnitude. Seeing as how the values ranged from 0 to 255, these are relatively small changes caused by
removing one of the singular values.

This example demonstrates the power of SVD when it comes to figuring out how to determine which of
the data is the least important in reconstructing the original matrix, A.

5

Singular Value Removal Effect on File Size

We will now examine the relation between the amount of data in A, and the amount of data required
to store A using k singular values in SVD. As previously mentioned, because SVD turns one matrix into 3,
without reducing some of the singular values to 0 it actually is more data intensive. For the sake of the math
in this section, we will just consider the amount of non-zero numbers that are required to form the matrices.

To start, let us assume A is an m x n matrix that we will then apply SVD to. From this, the formatting
of SVD will cause us to have 3 matrices instead of 1, where if A = UΣV T , then U is m x m, Σ is m x n, and
V T is n x n.

From this, it can be seen that, assuming we keep every single value in the matrix, we now have:

T (UΣV T) = mm+mn+ nn

Where T(x) is an arbitrary function, taking in some matrix, and outputting the quantity of relevant
numbers contained.

This is clearly much more than just storing the entirety of A (T (A) = mn), and so we are starting from
behind in terms of saving on data with SVD.

However, we already have some ways in which we can save data. To start, we do not need to keep m x
n values for Σ, and instead can just keep the rank of the matrix, because all of the off diagonal values are
zero. Now:

a ≡ min(m, n) → T (Σ) = a
T(UΣV T) = (ma+ a+ n)

This T (UΣV T) equation works because a equals either m or n, and then for the larger of the two, many
entries of that matrix are inevitably going to become irrelevant, due to the Σ matrix being filled with zeroes.
Look at a 2 x 5 matrix for example:

Σ =

[
σ1 0 0 0 0
0 σ2 0 0 0

]
Here, clearly the U matrix will be 2 x 2, and so will not be reduced at all, since a = 2, so 2 x a = 2 x

2. In comparison, the V T matrix will be 5 x 5. However, since all of the entries in the last 3 columns of Σ
are zero, none of the entries in the last 3 rows of V T will be multiplied by anything but zero. Therefore, if
we are going to store all of the values that actually matter in V T , we will only need each of the values in
the first 2 rows, which is then 5(2) = n(a) = 10 numbers to store. Likewise, this works in reverse for the m
¿ a case, since all of the values in the later columns will then only be multiplied by zeroes in the bottom of
the Σ matrix. This logic is how the equation for T (UΣV T) above was derived, with the knowledge that by
knowing the necessary shape of all matrices, and which portions of them must be filled by zeroes (the off
diagonal elements of Σ and either the right side of U or the bottom of V T will be filled with zeroes).

Now, we need to consider the case of reducing the number of singular values by setting any number of
them to 0. We will define k as the number of singular values used, k ≤ a.

We will now have Σ′ of the form (for k = 3 in this case):

Σ′ =


σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0
0 0 σ3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Therefore, from this we will now only have k non-zero values from the Σ matrix to store, m · k values

from the U matrix, and n · k values from the V T matrix by similar logic as above. This gives the following
equation for T:

T (UΣ′V T) = km+ k + kn = k(m+ n+ 1)

This result is the same as what we saw from Baumann, 2018. From this, we can then make the interesting
comparison of T (A) to T (A′), in particular for the n ≈ m >> 1 case:

6

T (A′)
T (A) = k(n+m+1)

nm → 2k
n

This shows that, roughly speaking, you will need to remove at least half of the singular values in order
to start saving on file size versus just storing the A matrix in its entirety.

In the n >> m case:

k(n+m+1)
nm → k

m

Here, you need to have roughly m singular values to begin saving on file size. Because you start with
only as many singular values as the minimum of m and n, for every singular value you remove you save on
more data than in the m ≈ n case.

The conclusion here is that generally speaking, in order to catch up to just storing the matrix A normally,
you have to remove up to roughly n

2 singular values in the worst case scenario of A being square (n x n),
and having to remove very few singular values in the best case scenario, where m and n are very far apart.

Our Implementation

Understanding File Size

To understand file sizes in the context of image storage, it’s important to recognize that images are
easily represented as RGB matrices, with each pixel value ranging from 0 to 255. This range corresponds to
28 = 256, meaning each pixel value requires 8 bits, or 1 byte, of storage. Since each image has three color
channels (Red, Green, and Blue), the total size of the image in bytes can be calculated as:

Total Bytes = Height×Width× 3

Additionally, note that 1024 bytes = 1 kilobyte (KB), not 1000 bytes. For example, for a 10×15 pixel image,
the raw file size is:

10× 15× 3 = 450 bytes, or approximately 0.439KB.

File Types

Throughout the later sections of this report different versions of image file types will become relevant.
The most important file type to this project is the .bmp image file. This stores the entire data of the

image with an R, G, and B value from 0 to 255 for each pixel. This is a form of lossless compression, where
all of the data is preserved, at the cost of a larger file size. Because of the lack of compression involved in
.bmp files, they are typically not used in any everyday life context. However, they are useful for their raw
data in the context of this project.

Next, .png image files are another, more advanced version of lossless compression. Similar to .bmp
files, they will preserve every last bit of integrity of the image, although they will also reduce the file size
significantly while doing so. This is possible through complicated algorithims for the case of .png files.
However, lossless compression in general can be understood in the context of an image that is entirely white
on one side, and entirely black on the other - there is no need to store the color for each pixel in the image,
when instead it can be much more concisely stated that this half of the image is black, and the other white.
In this vein, .png files will compress images without undergoing any loss, at the cost of slightly higher file
sizes.

The last commonly seen file type we will compare to are .jpeg image files. These image files are known
as lossy, because the compression involved ends up losing some of the image quality throughout its process.
However, this also means that generally speaking, .jpeg image files are able to achieve higher compression
ratios, which is often desirable for the almost unnoticeable amount of loss in quality.

Compared to all of these advanced image files, SVD is the worst of both worlds - it is always lossy as
soon as you remove even just the smallest singular value. Additionally, because it starts out at even higher

7

file sizes than .bmp, it is required to lose a lot of data before the file sizes can be comparable to the more
advanced file types such as .jpeg or .png files.

Calculating File Size Programmatically

To programmatically calculate the file size after applying SVD-based compression, the following Python
script was used (see Appendix A.3.3). The script calculates the total data required to store an image using
a reduced number of singular values for each channel. The formula accounts for the dimensions of the U, Σ,
and V T matrices:

• U : m× k (Height × Number of Singular Values)

• Σ : k (Number of Singular Values)

• V T : k × n (Number of Singular Values × Width)

For instance, using a 10 × 15 pixel image, the program calculates the data size as shown in the output
table (Figure 2). For comparison, storing the same image in raw format without compression requires
10× 15× 3 = 450 bytes, or approximately 0.439KB. From the 10 singular values produced by a matrix this
size, we have to remove half of the singular values before we see any storage size benefit, this makes sense
with our previous assumption of n/2 removal for an almost square matrix, the true benefits of SVD are much
more apparent when m ¿¿ n or n ¿¿ m. This comparison illustrates how SVD compression can significantly
impact storage requirements for the better, or for the worse, depending on the number of singular values
retained.

Figure 2 SVD Storage Analysis for a 10x15 Image

Kodak Image Set

The Kodak Image Set, which is frequently used for benchmarking image processing algorithms, consists of
768×512 resolution images. These images are valuable for evaluating performance because of their consistent
quality and dimensions. The raw file size for such an image can be calculated as:

768× 512× 3 = 1, 179, 648 bytes, or approximately 1152KB.

In our benchmarks, we compare the raw file size with compressed formats such as BMP, PNG, and JPG,
referencing benchmarks from Brocchi, n.d. The compression achieved with SVD is evaluated relative to these
common formats. For our implementation, we downloaded the images from Tepid, 1999.

Performing Image Reconstruction with SVD

In this section, we demonstrate the process of image reconstruction using Singular Value Decomposition
(SVD). For this paper, we will use Kodak Image 1 as the example. The script that performs the SVD-based

8

image reconstruction can be found in Appendix A.3.5. This code allows us to specify the number of singular
values to retain during reconstruction, enabling variable compression of the image.

The output from this process is illustrated in Figure 8 located at Appendix A.2.2. The output shows
several critical pieces of information:

• The original BMP image, which has a file size of 1152KB in this case.

• The compressed image, whose file size is dependent on the number of singular values retained.

• The number of singular values used for reconstruction.

• The percentage of singular values retained relative to the total.

As an example, the output image demonstrates the reconstruction of Kodak Image 1 using only 100
singular values. This showcases the balance between compression and image quality, as higher compression
levels (fewer singular values) reduce the file size but may also lead to a loss of detail in the reconstructed
image.

Results
Across all of these categories, we will compare the image of a certain file type to our own compressed

image at the same file size. Across the board, we expect to have worse quality, because SVD is a very
elementary method of file compression. However, SVD in this format does have one strength - because we
can easily dictate how many singular values we are using, we can very easily adjust the file size to as low as
we want, including way lower than any automatic compression would ever normally go. The loss of image
quality in these regimes is very obvious, but depending on application it could in theory be an acceptable
trade off.

Additionally, it should be noted that in all of the below images, it is hard to say how much loss of quality
has occurred in the transferring of these files into this pdf through overleaf. Because this is hard to quantify,
much of the discussion relevant to this report will be about the qualitative aspects of the images, with the
quantitative side of things mostly being relegated to the file sizes. In general though, it can be said that
across the board, the SVD image is the worst quality at a given file size, and that this effect was more
noticeable with the true image files to look at, instead of being forced to look through the lens of the pdf.

Comparing SVD to BMP

Here, it should be noted that the BMP image is actually a PNG, because both are lossless images, and
overleaf does not support BMP image files.

It should be noted that 307 singular values were used to form this image.

9

(a) Original BMP Image (Kodak 1, 1152KB) (b) SVD Compressed (Kodak 1, 1152KB)

Figure 3 Comparison of Original and Compressed BMP Images

These files are at an image size of 1,152 kB. At this size, they are over 60% larger than the commonly
accepted lossless file type of PNG. It should be said, however, that at this size even the SVD image looks to
be of comparable quality. Even still, slight problems do arise when looking closesly at the SVD image - fine
details, in particular any kind of line formed in the image is less distinct than it should be. This is the start
of the effects of lossy compression.

Comparing SVD to PNG

In this image, the corresponding SVD image uses 192 singular values to get down to this file size of 719
kB.

(a) Original PNG Image (Kodak 1, 719KB) (b) SVD Compressed (Kodak 1, 719KB)

Figure 4 Comparison of Original and Compressed PNG Images

For this image, the issues that started popping up in the SVD image at 1,152 kB are even more pronounced
in this 719 kB version. Every line between the bricks is blurrier and less pronounced than it is in the lossless
version. On top of that, even the solid colors feel ’fuzzier’, in particular the main door is clearly not quite
right. The effects of losing more and more data to SVD is showing here, although of more interest is its
manner of doing so: It is not like there is some overall color shift occurring, or that it generally seems too
bright or too dark in comparison to the ’true’ image, as much as it is the finer details and blending of colors
which is being lost.

10

Comparing SVD to JPG

In this image, the corresponding SVD image uses 50 singular values to get down to this file size of 187
kB.

(a) Original JPG Image (Kodak 1, 187KB) (b) SVD Compressed (Kodak 1, 187KB)

Figure 5 Comparison of Original and Compressed JPG Images

Notably in this comparison, despite the extremely small file size of the jpeg image, it is still of relatively
high quality. When looking at the original image files, it was hard to find any obvious differences between
this jpeg and the lossless alternatives. In contrast, at this file size the SVD image is at this point noticeably
of poorer quality. The most obvious thing here is that the image appears to be getting ’streaky’ in some
ways, with lines of color being drawn out past where they seem to belong.

Limits of SVD Image Compression

An interesting fact about SVD compression is that the compression ratio is not directly correlated with
the end quality of the image, and instead is entirely to do with the number of singular values being used. In
this manner, how effective this compression is in terms of image quality has little to do with the arbitrary
number of singular values used, and instead has more to do with the magnitude of the singular values kept
vs the magnitude of those being dropped.

However, this section is more to talk about something we can do with SVD that is not automatically
done with typical image files - getting the file size down to ridiculously small amounts.

11

(a) Uncompressed Kodak 1 (b) Uncompressed Kodak 2

(c) SVD Compressed Kodak 1 (20 Singular Values) (d) SVD Compressed Kodak 2 (20 Singular Values)

(e) SVD Compressed Kodak 1 (5 Singular Values) (f) SVD Compressed Kodak 2 (5 Singular Values)

Figure 6 Comparison of Uncompressed and SVD Compressed Images for Kodak 1 and Kodak 2

These files above can be seen getting increasingly ’streaky’ as the number of singular values used gets
lower. However, even at these extremely quantities of singular values (5 out of the original 512), the pictures
are still recognizable. While the streakiness of the images is making them increasingly unpractical, and use
for practical purposes would require their fixing, the very low data usage here (compression ratio of close to
60:1) makes the loss in quality understandable.

12

Conclusion
Through this project, we discovered several key insights about the use of Singular Value Decomposition

(SVD) for image compression. One major takeaway was that SVD performs better as a compression algorithm
when applied to datasets that are not square. As outlined in the report, the point at which SVD becomes
effective occurs much earlier in such cases, requiring fewer singular values to achieve meaningful compression.
Additionally, SVD works more effectively on simpler images; detailed images tend to become blurry with
significant compression, as evidenced by Chernyshev, 2023, where a mostly white cat maintained quality far
better than more complex scenes.

Our results largely aligned with our expectations. We anticipated that a basic implementation of SVD
would not outperform industry-standard formats like PNG and JPG, which are optimized for efficiency and
quality. However, it was rewarding to create an image compression algorithm from scratch and observe
its functionality. The ability to compress an image significantly while retaining its overall recognizability
demonstrates the flexibility and utility of SVD as a tool for exploring data compression.

The results also provided a deeper appreciation for the complexity of existing compression methods.
Comparing SVD to formats such as BMP, PNG, and JPG highlighted the lengths these formats go to in
achieving lossless or high-quality lossy compression with remarkable efficiency. SVD served as a powerful
lens through which we could understand the foundational principles of image compression, even if it is not
a practical alternative for real-world applications.

In terms of future work, there is limited scope for improving SVD-based image compression as a viable
method for real-world implementation. However, additional exploration into hybrid approaches, combining
SVD with other compression techniques, could yield interesting results. In terms of furthering our under-
standing of SVD, it would be interesting to deep dive into what specifically causes artifacts in images when
removing singular values in the decomposition. This would require analyzing possibly custom made images
that isolate situations where SVD would either thrive or struggle with and explicitly analyzing the root cause
of these artifacts.

References
Baumann, T. (2018). Svd image compression demo. https://timbaumann.info/svd-image-compression-demo/
Brocchi, S. (n.d.). Kodak image benchmarking. http : / / www . researchandtechnology . net / pcif / kodak

benchmarks.php?i=1
Chernyshev, D. (2023). Svd image compression. https://dmicz.github.io/machine- learning/svd- image-

compression/
Murthy, M. (2020). A beginner’s guide to singular value decomposition (svd). https://mukundh-murthy.

medium.com/a-beginners-guide-to-singular-value-decomposition-svd-97581e080c11
Svd example. (n.d.). https://www.d.umn.edu/∼mhampton/m4326svd example.pdf
Tepid, R. (1999). Kodak image set. https://r0k.us/graphics/kodak/

13

https://timbaumann.info/svd-image-compression-demo/
http://www.researchandtechnology.net/pcif/kodak_benchmarks.php?i=1
http://www.researchandtechnology.net/pcif/kodak_benchmarks.php?i=1
https://dmicz.github.io/machine-learning/svd-image-compression/
https://dmicz.github.io/machine-learning/svd-image-compression/
https://mukundh-murthy.medium.com/a-beginners-guide-to-singular-value-decomposition-svd-97581e080c11
https://mukundh-murthy.medium.com/a-beginners-guide-to-singular-value-decomposition-svd-97581e080c11
https://www.d.umn.edu/~mhampton/m4326svd_example.pdf
https://r0k.us/graphics/kodak/

A Appendix

A.1 Math

A.1.1 Finding Eigenvalues for SVD Example

First, find ATA, and then row reduce for each of its eigenvalues:

ATA =

 13 12 2
12 13 −2
2 −2 8


This has eigenvalues of λ = 25, 9, and 0

ATA− 25I =

 −12 12 2
12 −12 −2
2 −2 −17

 →

 1 −1 0
0 0 1
0 0 0


This has a unit vector of v1 = (1√

2
, 1√

2
, 0)T

Similarly, for λ = 9:

ATA− 9I =

 4 12 2
12 4 −2
2 −2 −1

 →

 2 6 1
0 −16 −4
0 −2 −1

 →

 2 6 1
0 4 1
0 0 0


This has a unit vector of v2 = (1√

18
, −1√

18
, 4√

18
)T

Finally, v3 can be found using orthognality to both v1 and v2 by solving the following equations:

vT1 v3 = 0
vT2 v3 = 0

Define v3 as (a, b, c)T gives way to the system of equations:

a+ b = 0
a− b+ 4c = 0

Solving the system of equations then normalizing the vector yields v3 = (23 ,
−2
3 , −1

3)T

14

A.2 Figures

A.2.1 Kodak Benchmark Numbers

Figure 7 Kodak Image Benchmarking File Sizes per File Type

15

A.2.2 Image Reconstruction Example Output

Figure 8 Image Reconstruction Example Output

A.3 Code

A.3.1 Custom SVD Implementation

1 import numpy as np

2

3 def svd(A):

4 # Step 1: Compute A * A^T to find the singular values (σi)
5 AAT = np.dot(A, A.T)

6 eigenvalues_AAT, eigenvectors_AAT = np.linalg.eig(AAT)

7 singular_values = np.sqrt(eigenvalues_AAT)

8

9 # Step 2: Compute AT * A to find the right singular vectors (columns of V)

10 ATA = np.dot(A.T, A)

11 eigenvalues_ATA, eigenvectors_ATA = np.linalg.eig(ATA)

12

13 # Normalize eigenvectors of AT * A to form V (right singular vectors)

14 V = eigenvectors_ATA / np.linalg.norm(eigenvectors_ATA, axis=0)

15

16 # Step 3: Sort singular values and reorder U and V accordingly

17 sorted_indices = np.argsort(singular_values)[::-1] # Indices to sort in descending order

18 singular_values = singular_values[sorted_indices] # Sort singular values

19 V = V[:, sorted_indices] # Reorder columns of V

20 eigenvectors_AAT = eigenvectors_AAT[:, sorted_indices] # Reorder columns of U (AAT eigenvectors)

21

22 # Step 4: Form Σ (diagonal matrix of singular values, same size as A)

23 Σ = np.zeros_like(A, dtype=float)

24 np.fill_diagonal(Σ, singular_values)

25

26 # Step 5: Compute U (left singular vectors) using U = (1/σ) * A * v

27 U = np.zeros((A.shape[0], A.shape[0]))

28 for i in range(len(singular_values)):

29 U[:, i] = np.dot(A, V[:, i]) / singular_values[i]

30

31 # Normalize U

32 U = U / np.linalg.norm(U, axis=0)

33

34 # Verification: Reconstruct A from U, Σ, and V^T

35 A_reconstructed = np.dot(U, np.dot(Σ, V.T))

36

37 # Return results

16

38 results = {

39 "AAT": AAT,

40 "Eigenvalues of AAT": eigenvalues_AAT,

41 "Singular values": singular_values,

42 "ATA": ATA,

43 "Eigenvalues of ATA": eigenvalues_ATA,

44 "Right singular vectors (V)": V,

45 "Σ": Σ,
46 "Left singular vectors (U)": U,

47 "Reconstructed A": A_reconstructed

48 }

49

50 return results

51

52 if __name__ == "__main__":

53 # Example usage

54 A = np.random.rand(4, 4) # Replace with any matrix

55 results = svd(A)

56 for key, value in results.items():

57 print(f"{key}:\n{value}\n")

A.3.2 Reconstruction Example

1 import numpy as np

2

3 # Example matrix A

4 np.random.seed(0)

5 A = 255*np.random.rand(5, 5)

6

7 # Step 1: Compute SVD decomposition using NumPy

8 U, S, Vt = np.linalg.svd(A)

9

10 # Print the original matrix A

11 print("Original Matrix A:")

12 print(A)

13

14 # Print the singular values

15 print("\nSingular Values:")

16 print(S)

17

18 # Step 2: Modify the singular values by setting the smallest to 0

19 S_modified = S.copy()

20 S_modified[-1] = 0 # Set the smallest singular value to 0

21

22 # Step 3: Reconstruct the matrix with modified singular values

23 Σ_modified = np.zeros_like(A, dtype=float) # Create a Σ matrix of the same size as A

24 np.fill_diagonal(Σ_modified, S_modified) # Place modified singular values on the diagonal

25 A_reconstructed = np.dot(U, np.dot(Σ_modified, Vt)) # Reconstruct A

26

27 # Print the reconstructed matrix

28 print("\nReconstructed Matrix A (After Modifying Singular Values):")

29 print(A_reconstructed)

30

31 # Print the difference matrix

32 print("\nDifference Matrix:")

33 print(A-A_reconstructed)

A.3.3 Expected File Size

1 import pandas as pd

2

3 # Function to calculate data storage for reduced SVD in KB per channel

4 def calculate_storage(height, width, num_singular_values):

17

5 U_size = height * num_singular_values / 1024 # U: m x k

6 S_size = num_singular_values / 1024 # S: k

7 Vt_size = num_singular_values * width / 1024 # Vt: k x n

8 total_data = U_size + S_size + Vt_size

9 return total_data

10

11 # Input dimensions

12 height = 512

13 width = 768

14

15 # Store results for different numbers of singular values used

16 results = []

17 max_singular_values = min(height, width) # Max singular values is the minimum of dimensions

18 for num_singular_values in range(1, max_singular_values + 1): # Use at least 1 singular value

19 total_data_per_channel = calculate_storage(height, width, num_singular_values)

20 total_data_rgb = total_data_per_channel * 3 # Multiply by 3 for RGB channels

21 results.append({

22 "# Singular Values": num_singular_values,

23 "Total Data (KB)": total_data_rgb

24 })

25

26 # Create a DataFrame to display results

27 df = pd.DataFrame(results)

28

29 # Adjust pandas display settings to show all rows and columns

30 pd.set_option("display.max_rows", None) # Show all rows

31 pd.set_option("display.max_columns", None) # Show all columns

32 pd.set_option("display.width", None) # Don't wrap columns

33

34 # Display results

35 print(df.to_string(index=False))

A.3.4 Compare SVD Implementations

1 from svd import svd

2 import numpy as np

3 # Generate a random matrix A

4 np.random.seed(0)

5 A = np.random.rand(5, 5)

6

7 # Compute SVD using custom svd function

8 results = svd(A)

9 U_custom, S_custom, Vt_custom = results["Left singular vectors (U)"], np.diag(results["Σ"]), results["Right singular vectors (V)"]

10

11 # Compute SVD using numpy's svd function

12 U_np, S_np, Vt_np = np.linalg.svd(A, full_matrices=False)

13

14 # Print the decompositions

15 print("Custom SVD Decomposition:")

16 print(U_custom)

17 print(np.diag(S_custom))

18 print(Vt_custom)

19

20 print("\nNumpy SVD Decomposition:")

21 print(U_np)

22 print(np.diag(S_np))

23 print(Vt_np)

A.3.5 Main Image Reconstruction

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from PIL import Image

18

4 import os

5

6 def compress_image_svd(image_path, num_singular_values):

7 # Load the image

8 img = Image.open(image_path)

9 img_array = np.array(img)

10

11 # Ensure the image has RGB channels

12 if img_array.ndim != 3 or img_array.shape[2] != 3:

13 raise ValueError("Image must have three color channels (RGB).")

14

15 # Extract the R, G, B channels

16 R, G, B = img_array[:, :, 0], img_array[:, :, 1], img_array[:, :, 2]

17

18 # Function to perform SVD and calculate size of reduced decomposition

19 def svd_reconstruct(channel, num_singular_values):

20 U, S, Vt = np.linalg.svd(channel, full_matrices=False)

21 total_singular_values = len(S)

22

23 # Reconstruct the channel with reduced SVD

24 S_reduced = np.diag(S[:num_singular_values])

25 reconstructed_channel = np.dot(U[:, :num_singular_values], np.dot(S_reduced, Vt[:num_singular_values, :]))

26

27 # Quantize values to 8-bit integers (0-255)

28 quantized_channel = np.clip(reconstructed_channel, 0, 255).astype(np.uint8)

29

30 # Calculate size of reduced matrices (in bytes) after quantization

31 reduced_size = (

32 (U[:, :num_singular_values].shape[0] * U[:, :num_singular_values].shape[1]) # U

33 + num_singular_values # S

34 + (Vt[:num_singular_values, :].shape[0] * Vt[:num_singular_values, :].shape[1]) # Vt

35) # All in bytes per element (1 byte after quantization)

36

37 return quantized_channel, total_singular_values, reduced_size

38

39 # Compress each channel

40 R_compressed, R_total_sv, R_reduced_size = svd_reconstruct(R, num_singular_values)

41 G_compressed, G_total_sv, G_reduced_size = svd_reconstruct(G, num_singular_values)

42 B_compressed, B_total_sv, B_reduced_size = svd_reconstruct(B, num_singular_values)

43

44 # Ensure all channels have the same total singular values

45 assert R_total_sv == G_total_sv == B_total_sv, "Total singular values mismatch across channels."

46 total_singular_values = R_total_sv

47

48 # Combine the channels to form the compressed image

49 compressed_image = np.stack([R_compressed, G_compressed, B_compressed], axis=2)

50

51 # Total reduced size for all channels (in bytes)

52 total_reduced_size = (R_reduced_size + G_reduced_size + B_reduced_size)

53

54 # Calculate sizes of the original image and the reduced decomposition

55 original_size = os.path.getsize(image_path)

56

57 return img, compressed_image, original_size, total_reduced_size, total_singular_values

58

59 # Parameters

60 image_path = "images/1.bmp"

61 num_singular_values = 30 # Adjust for desired compression level

62

63 # Compress the image

64 original_img, compressed_img, original_size, reduced_size, total_singular_values = compress_image_svd(image_path, num_singular_values)

65

66 # Calculate percentage of singular values used

67 percentage_singular_values = (num_singular_values / total_singular_values) * 100

68

69 # Display the images

70 plt.figure(figsize=(12, 6))

71 plt.subplot(1, 2, 1)

19

72 plt.title(f"Original Image\nSize: {original_size / 1024:.2f} KB")

73 plt.imshow(original_img)

74 plt.axis("off")

75

76 plt.subplot(1, 2, 2)

77 plt.title(f"Compressed Image\nSVD Size: {reduced_size / 1024:.2f} KB\n{num_singular_values} Singular Values Used ({percentage_singular_values:.2f}%)")

78 plt.imshow(compressed_img)

79 plt.axis("off")

80

81 plt.tight_layout()

82 plt.show()

83

84 # Output the sizes and percentage in the console

85 print(f"Original image size: {original_size / 1024:.2f} KB")

86 print(f"Reduced SVD decomposition size: {reduced_size / 1024:.2f} KB")

87 print(f"Number of singular values used: {num_singular_values} ({percentage_singular_values:.2f}%)")

20

	Abstract
	Attribution
	Introduction
	Understanding SVD
	Performing SVD Example
	Programming SVD
	Small Singular Value Removal
	Singular Value Removal Effect on File Size

	Our Implementation
	Understanding File Size
	File Types
	Calculating File Size Programmatically
	Kodak Image Set
	Performing Image Reconstruction with SVD

	Results
	Comparing SVD to BMP
	Comparing SVD to PNG
	Comparing SVD to JPG
	Limits of SVD Image Compression

	Conclusion
	Appendix
	Math
	Finding Eigenvalues for SVD Example

	Figures
	Kodak Benchmark Numbers
	Image Reconstruction Example Output

	Code
	Custom SVD Implementation
	Reconstruction Example
	Expected File Size
	Compare SVD Implementations
	Main Image Reconstruction

