
University of Colorado - Boulder

ECEN 2270
Electronics Lab | Spring 2024

ECEN 2270 Electronics Lab: Lab 5

Team Papa:
Gabriel Agostine
Sam Walker
Julian Werder
Jonah Yunes

Lab Instructor:
Steven Dunbar

Lab: Section 12

Sunday, May 5, 2024

I. Introduction
For Lab 5, our objective is to create a remote control system to independently manage all our cars. The remote is
designed with a joystick to regulate the car’s direction and speed. The Arduino then processes This joystick’s input,
which transmits the data via an RF antenna to a receiving antenna on the robot. Our remote includes a battery pack for
power and buttons to select which robot to transmit to, each button corresponding to a specific frequency for antenna
transmission. The remote is assembled on a breadboard, including the Arduino Uno, a joystick, three buttons, an RF
antenna, and a battery pack. Additionally, we are adapting this remote for our previous robot, albeit with a modified
controller. Instead of a single joystick controlling both sides of the robot, we incorporate two joysticks, each responsible
for controlling one side independently.

II. Materials

Purchased Materials

Item Quantity Price ($)

NRF24L01+PA 6 4.00
Breakout Adapter 3 2.00

Previously Owned Materials

Item Quantity

Arduino Nano Every 1
Arduino Uno 1
Joystick Module 3
Buttons 3

III. Theory and Application
We approached this project by testing each of the individual components and elements by themselves and then compiling
them all together.

A. Joystick Control Implementation

1. Simple Approach

We first tackled building the joystick control by testing the simple capabilities of the joystick and using simple left vs
right, up vs down control to determine which function from lab 4 we use to control the motor directions.

1 // Pin assignments
2 const int pinON = 6;
3 const int pinLeftForward = 11;
4 const int pinLeftBackward = 12;
5 const int pinLeftPWM = 10;
6 const int pinRightForward = 7;
7 const int pinRightBackward = 8;
8 const int pinRightPWM = 9;
9

10 const int pinRightEncoder = 2;
11 const int pinLeftEncoder = 4;
12

1

13 const int joystickX = A0; // X-axis of joystick
14 const int joystickY = A1; // Y-axis of joystick
15

16 const int deadzone = 25; // Deadzone threshold
17 volatile int PWM = 0;
18

19 void setup() {
20 Serial.begin(9600);
21 pinMode(pinON, INPUT_PULLUP);
22

23 pinMode(pinLeftForward, OUTPUT);
24 pinMode(pinLeftBackward, OUTPUT);
25 pinMode(pinLeftPWM, OUTPUT);
26 pinMode(pinRightForward, OUTPUT);
27 pinMode(pinRightBackward, OUTPUT);
28 pinMode(pinRightPWM, OUTPUT);
29 }
30

31 void loop() {
32 int yValue = analogRead(joystickX) - 512; // Center the joystick
33 int xValue = analogRead(joystickY) - 512; // Center the joystick
34

35 // Apply deadzone
36 xValue = (abs(xValue) < deadzone) ? 0 : xValue;
37 yValue = (abs(yValue) < deadzone) ? 0 : yValue;
38

39 // Map joystick values to motor speeds
40 int normalizedX = map(xValue, -512, 512, -255, 255);
41 int normalizedY = map(yValue, -512, 512, -255, 255);
42

43 Serial.print(normalizedX);
44 Serial.print(",");
45 Serial.println(normalizedY);
46

47 if(normalizedX == 0 && normalizedY == 0)
48 stopMotors();
49 else{
50 if(normalizedX<0)
51 turnLeft();
52 if(normalizedX>0)
53 turnRight();
54 if(normalizedY<0)
55 goBackward();
56 if(normalizedY>0)
57 goForward();
58 PWM = (abs(normalizedY)+abs(normalizedX))/2;
59 }
60 analogWrite(pinLeftPWM, PWM);
61 analogWrite(pinRightPWM, PWM);
62 }
63

64 void goForward() {
65 digitalWrite(pinLeftBackward, LOW);
66 digitalWrite(pinRightBackward, LOW);
67 digitalWrite(pinRightForward, HIGH);
68 digitalWrite(pinLeftForward, HIGH);
69 }
70

71 void goBackward() {
72 digitalWrite(pinLeftBackward, HIGH);
73 digitalWrite(pinRightBackward, HIGH);
74 digitalWrite(pinRightForward, LOW);
75 digitalWrite(pinLeftForward, LOW);
76 }
77

78 void turnRight() {
79 digitalWrite(pinRightForward, LOW);
80 digitalWrite(pinLeftBackward, LOW);

2

81 digitalWrite(pinLeftForward, HIGH);
82 digitalWrite(pinRightBackward, HIGH);
83 }
84

85 void turnLeft() {
86 digitalWrite(pinRightForward, HIGH);
87 digitalWrite(pinLeftBackward, HIGH);
88 digitalWrite(pinLeftForward, LOW);
89 digitalWrite(pinRightBackward, LOW);
90 }
91

92 void stopMotors() {
93 digitalWrite(pinLeftForward, LOW);
94 digitalWrite(pinRightForward, LOW);
95 digitalWrite(pinLeftBackward, LOW);
96 digitalWrite(pinRightBackward, LOW);
97 analogWrite(pinLeftPWM, 0); // Set PWM to 0
98 analogWrite(pinRightPWM, 0); // Set PWM to 0
99 }

This was a simple yet effective approach, but we wanted effective modular turning radius and more responsive motor
control. To do this it is necessary to analyze the joystick position based on angle and magnitude and compare it to
quadrant values

2. Complex Approach

• We calculate the magnitude of the joystick’s position vector, which is the hypotenuse of a right-angled triangle
formed by the X and Y values as the other two sides. This magnitude indicates how far from the center the joystick
is moved, which we can translate to the speed of the motors.

• We then calculate the angle of the joystick’s position vector, which tells us the direction in which the joystick is
pointed. This angle helps us determine how to control the motors for steering.

To implement more nuanced control, we divide the joystick’s plane into quadrants and shifted quadrants. The traditional
quadrants are simply the four quarters of the Cartesian plane, but we introduce shifted quadrants that divide the plane
into eight sections. This allows for a more precise mapping of joystick positions to motor control commands.

Fig. 1 Traditional Quadrants Fig. 2 Shifted Quadrants

3

Fig. 3 Left Motor Direction Control Fig. 4 Right Motor Direction Control

• Forward/Backward Movement: When the joystick is pushed directly up or down, both motors are driven at the
same speed but in different directions corresponding to forward or backward motion.

• Turning: As the joystick is moved away from the direct up or down positions towards the left or right, our control
system adjusts the speed of the motors differently. The closer the joystick is to the left or right edge, the larger the
difference in speed between the two motors, which causes the robot to turn. The robot has the full range from
turning in place to going fully straight.

The speed of each motor is controlled by PWM signals. The magnitude of the joystick vector is used to scale the PWM
signal. The closer the joystick is to the edge, the higher the PWM signal, and consequently, the faster the motor speed.
The angle determines the difference in PWM signals sent to the left and right motors, thus controlling the turn radius.

3. The Code

1) We calculate the joystick’s position vector magnitude and angle.
2) We use these to set flags for quadrants and shifted quadrants.
3) Based on the octet the joystick is in, we determine the direction of each motor (forward or backward).
4) We adjust the PWM signals for each motor based on how close the joystick is to the horizontal or vertical axes,

which corresponds to how sharply we want the robot to turn.
1 #include <math.h>
2

3 // Pin assignments
4 const int pinLeftForward = 15;
5 const int pinLeftBackward = 14;
6 const int pinLeftPWM = 10;
7 const int pinRightForward = 11;
8 const int pinRightBackward = 12;
9 const int pinRightPWM = 9;

10

11 const int joystickX = A6; // X-axis of joystick
12 const int joystickY = A7; // Y-axis of joystick
13

14 const int deadzone = 20; // Deadzone threshold
15 volatile int leftPWM = 0;
16 volatile int rightPWM = 0;
17

18 void setup() {

4

19 Serial.begin(9600);
20

21 pinMode(pinLeftForward, OUTPUT);
22 pinMode(pinLeftBackward, OUTPUT);
23 pinMode(pinLeftPWM, OUTPUT);
24 pinMode(pinRightForward, OUTPUT);
25 pinMode(pinRightBackward, OUTPUT);
26 pinMode(pinRightPWM, OUTPUT);
27 }
28

29 void loop() {
30 int yValue = analogRead(joystickX) - 512; // Center the joystick
31 int xValue = analogRead(joystickY) - 512; // Center the joystick
32

33 // Apply deadzone
34 xValue = (abs(xValue) < deadzone) ? 0 : xValue;
35 yValue = (abs(yValue) < deadzone) ? 0 : yValue;
36

37 // Map joystick values to motor speeds
38 int normalizedX = map(xValue, -512, 512, -255, 255);
39 int normalizedY = map(yValue, -512, 512, -255, 255);
40

41 int magnitude = constrain(sqrt(pow(normalizedX,2) + pow(normalizedY,2)),0,255);
42 int angle = atan2(normalizedY, normalizedX) * 180 / PI;
43

44 if(magnitude == 0)
45 stopMotors();
46 else{
47 leftPWM = 255;
48 rightPWM = 255;
49

50 volatile bool quadrant1 = angle<=90&&angle>=0;
51 volatile bool quadrant2 = angle<=180&&angle>90;
52 volatile bool quadrant3 = angle<=-90&&angle>-180;
53 volatile bool quadrant4 = angle<0&&angle>-90;
54

55 volatile bool shiftedQuadrant1 = angle<135&&angle>45;
56 volatile bool shiftedQuadrant2 = abs(angle)>135;
57 volatile bool shiftedQuadrant3 = angle<-45&&angle>-135;
58 volatile bool shiftedQuadrant4 = abs(angle)<45;
59

60 // Set motor directions based on the flags
61 digitalWrite(pinLeftForward, quadrant1 || shiftedQuadrant1 || (quadrant3&&shiftedQuadrant2) ? HIGH : LOW);
62 digitalWrite(pinRightForward, quadrant2 || shiftedQuadrant1 || (quadrant4&&shiftedQuadrant4) ? HIGH :

LOW);
63 digitalWrite(pinLeftBackward, quadrant4 || shiftedQuadrant3 || (quadrant2&&shiftedQuadrant2) ? HIGH :

LOW);
64 digitalWrite(pinRightBackward, quadrant3 || shiftedQuadrant3 || (quadrant1&&shiftedQuadrant4) ? HIGH :

LOW);
65

66 //PWM
67 if(quadrant1||quadrant4){
68 leftPWM = magnitude;
69 rightPWM = abs(map(abs(angle),0,90,-255,255));
70 }
71 else{
72 rightPWM = magnitude;
73 leftPWM = abs(map(abs(angle),90,180,-255,255));
74 }
75 }
76

77 //Print the results to the Serial Monitor
78 Serial.println(angle);
79 // Serial.print(",");
80 // Serial.println(rightPWM);
81

82 analogWrite(pinLeftPWM, leftPWM);
83 analogWrite(pinRightPWM, rightPWM);

5

84 }
85

86 void stopMotors() {
87 digitalWrite(pinLeftForward, LOW);
88 digitalWrite(pinRightForward, LOW);
89 digitalWrite(pinLeftBackward, LOW);
90 digitalWrite(pinRightBackward, LOW);
91 leftPWM = 0;
92 rightPWM = 0;
93 }

Building upon the sophisticated framework of our joystick vector interpretation and control system, we have engineered
our motor direction control to fully utilize the potential of the joystick’s range of motion, allowing for unparalleled
precision in managing the robot’s turning radius. This feature is critical because it translates the subtle movements of
the joystick directly into dynamic steering responses. Our system doesn’t merely switch between forward and backward
movements or left and right turns. Instead, it interprets the exact angle and magnitude of the joystick’s position to
modulate the speed and direction of each motor with high fidelity. This modulation enables the robot to execute
turns with a wide variety of radii—from tight, on-the-spot pivots to gentle, wide arcs. Such versatility is crucial for
navigating complex environments where precise movements can make the difference between successful maneuvering
and collisions.

B. Horn Implemention

1. Overview

The provided Arduino script is designed to control a horn based on the input from a joystick. The primary components
involved are a joystick input and a horn output. Here’s how the code functions:

2. Setup Configuration

• The joystick input pin is configured with an internal pull-up resistor. This means it will read HIGH (inactive) by
default, unless the joystick is pressed, making it connect to ground and read LOW (active).

• The horn output pin is set as an OUTPUT to send signals to a horn.

3. Operational Details

The main operational loop of the code performs the following actions continuously:
1) It checks the state of the joystick input:

• If the joystick is pressed (input reads LOW), the program activates the horn by generating a continuous
tone at 2500 Hz on the horn’s output pin.

• If the joystick is not pressed (input reads HIGH), the horn is deactivated by stopping any tone generation
on the output pin.

4. Functionality

This setup allows the horn to be controlled directly by the joystick’s position. The horn will sound only while the joystick
is actively pressed, providing precise control over the horn’s activation.

5. The Code

1 const int joyIPT = 3;
2 const int hornPin = 5;
3 void setup() {
4 pinMode(joyIPT, INPUT_PULLUP);
5 pinMode(hornPin, OUTPUT);
6 Serial.begin(9600);
7 }
8 void loop (){

6

9 if(!digitalRead(joyIPT)){
10 tone(hornPin, 2500);
11 }else if(digitalRead(joyIPT)){
12 noTone(hornPin);
13 }
14 }

C. RF Implementation

1. Introduction

This section describes the necessary steps to optimize radio frequency communication for the nRF24L01+ module used
in Arduino projects. It highlights the importance of selecting the appropriate communication channel to reduce signal
loss and improve transmission reliability.

2. The Code

Transmitter Code
1 #include "SPI.h"
2 #include "RF24.h"
3 #include "nRF24L01.h"
4 #define CE_PIN 10
5 #define CSN_PIN A1
6 #define INTERVAL_MS_TRANSMISSION 250
7 RF24 radio(CE_PIN, CSN_PIN);
8 const byte address[6] = "00001";
9 //NRF24L01 buffer limit is 32 bytes (max struct size)

10 struct payload {
11 byte data1;
12 char data2;
13 };
14 payload payload;
15 void setup()
16 {
17 Serial.begin(115200);
18 radio.begin();
19 //Append ACK packet from the receiving radio back to the transmitting radio
20 radio.setAutoAck(false); //(true|false)
21 //Set the transmission datarate
22 radio.setDataRate(RF24_250KBPS); //(RF24_250KBPS|RF24_1MBPS|RF24_2MBPS)
23 //Greater level = more consumption = longer distance
24 radio.setPALevel(RF24_PA_MAX); //(RF24_PA_MIN|RF24_PA_LOW|RF24_PA_HIGH|RF24_PA_MAX)
25 //Default value is the maximum 32 bytes
26 radio.setPayloadSize(sizeof(payload));
27 //Act as transmitter
28 radio.openWritingPipe(address);
29 radio.stopListening();
30 }
31 void loop()
32 {
33 payload.data1 = 123;
34 payload.data2 = ’x’;
35 radio.write(&payload, sizeof(payload));
36 Serial.print("Data1:");
37 Serial.println(payload.data1);
38 Serial.print("Data2:");
39 Serial.println(payload.data2);
40 Serial.println("Sent");
41 delay(INTERVAL_MS_TRANSMISSION);
42 }

Receiver Code
1 #include "SPI.h"
2 #include "RF24.h"

7

3 #include "nRF24L01.h"
4 #define CE_PIN 10
5 #define CSN_PIN A1
6 #define INTERVAL_MS_SIGNAL_LOST 1000
7 #define INTERVAL_MS_SIGNAL_RETRY 250
8 RF24 radio(CE_PIN, CSN_PIN);
9 const byte address[6] = "00001";

10 //NRF24L01 buffer limit is 32 bytes (max struct size)
11 struct payload {
12 byte data1;
13 char data2;
14 };
15 payload payload;
16 unsigned long lastSignalMillis = 0;
17 void setup()
18 {
19 Serial.begin(115200);
20 radio.begin();
21 //Append ACK packet from the receiving radio back to the transmitting radio
22 radio.setAutoAck(false); //(true|false)
23 //Set the transmission datarate
24 radio.setDataRate(RF24_250KBPS); //(RF24_250KBPS|RF24_1MBPS|RF24_2MBPS)
25 //Greater level = more consumption = longer distance
26 radio.setPALevel(RF24_PA_MAX); //(RF24_PA_MIN|RF24_PA_LOW|RF24_PA_HIGH|RF24_PA_MAX)
27 //Default value is the maximum 32 bytes1
28 radio.setPayloadSize(sizeof(payload));
29 //Act as receiver
30 radio.openReadingPipe(0, address);
31 radio.startListening();
32 }
33 void loop()
34 {
35 unsigned long currentMillis = millis();
36 if (radio.available() > 0) {
37 radio.read(&payload, sizeof(payload));
38 Serial.println("Received");
39 Serial.print("Data1:");
40 Serial.println(payload.data1);
41 Serial.print("Data2:");
42 Serial.println(payload.data2);
43 lastSignalMillis = currentMillis;
44 }
45 if (currentMillis - lastSignalMillis > INTERVAL_MS_SIGNAL_LOST) {
46 lostConnection();
47 }
48 }
49 void lostConnection()
50 {
51 Serial.println("We have lost connection, preventing unwanted behavior");
52 delay(INTERVAL_MS_SIGNAL_RETRY);
53 }

3. Problem Identification

During initial testing phases of the code above, it was observed, as shown below, that the communication between the
transmitter and receiver was frequently interrupted, as indicated by repeated logs of lost connections. These interruptions
can lead to degraded performance and unintended behaviors in critical applications.

8

Fig. 5 Dropping Signals

4. Channel Interference

The nRF24L01+ operates in the congested 2.4 GHz band, which is shared by various devices including Wi-Fi routers,
Bluetooth devices, and other RF equipment. This can cause significant interference, resulting in the loss of signal
between the communicating modules.

5. Channel Optimization Strategy

To mitigate interference, the RF channel can be manually set to a less congested frequency within the range. The
nRF24L01+ supports 125 channels, allowing for flexibility in selecting the optimal channel based on environmental
conditions.

1 #define CHANNEL 76 // Example of setting a specific channel
2

3 void setup() {
4 Serial.begin(115200);
5 radio.begin();
6 radio.setAutoAck(false);
7 radio.setDataRate(RF24_250KBPS);
8 radio.setPALevel(RF24_PA_MAX);
9 radio.setPayloadSize(sizeof(payload));

10 radio.setChannel(CHANNEL); // Set the radio to use a specific channel
11 }

9

6. Benefits

Adjusting the channel minimizes the likelihood of interference from other devices, thereby enhancing the stability and
reliability of the RF communication. This adjustment is crucial for applications where consistent data transmission is
essential.

7. Conclusion

Identifying and setting an optimal channel for the nRF24L01+ module is a critical step in ensuring robust and reliable
communication in environments with potential RF interference. This process involves both testing different channels
and monitoring the system’s performance to select the most suitable frequency. Our testing revealed that at home the
optimal channel was 15, whereas at lab the optimal channel was 115. There is more information regarding the channel
testing in the Challenges and Lessons Learned section.

IV. Sam, Jonah, and Julian’s Remote

A. Introduction

This section outlines the implementation of Sam, Jonah and Julian’s transmitter and receiver scripts designed for
joystick-controlled robots via RF communication. The system includes additional functionalities such as robot-specific
control and debugging features.

B. System Overview

The system consists of two main scripts:
• Transmitter Script: Handles the reading of joystick inputs, button states, and transmits these commands after

some computation to the receiver via RF.
• Receiver Script: Receives the transmitted commands and controls the robot’s motors and other functionalities

accordingly.

C. Transmitter Script

The transmitter script uses a joystick to control motor speeds and directions, and three buttons to select which robot is
currently active. It includes debouncing functionality to prevent rapid toggling of robot control.

1. Key Features
• Joystick control for dynamic speed and direction adjustments.
• Button inputs to switch control between robots, allowing multiple robots to be controlled separately or simultane-

ously.

2. Transmitter Code

1 #include "SPI.h"
2 #include "RF24.h"
3 #include "nRF24L01.h"
4

5 //RF INFO
6 #define CE_PIN 10
7 #define CSN_PIN A1
8 #define INTERVAL_MS_TRANSMISSION 1
9 RF24 radio(CE_PIN, CSN_PIN);

10 const byte address[6] = "11111";
11 struct payload {
12 int leftPWM = 0;
13 int rightPWM = 0;
14 bool leftForward = false;
15 bool rightForward = false;

10

16 bool leftBackward = false;
17 bool rightBackward = false;
18 bool hornToggle = false;
19 bool robotSam = false;
20 bool robotJulian = false;
21 bool robotJonah = false;
22 bool stopDaMotors = true;
23 };
24 payload payload;
25

26 //JOYSTICK INFO
27 #define JOYSTICK_X_PIN A6
28 #define JOYSTICK_Y_PIN A7
29 #define JOYSTICK_BUTTON 2
30 const int deadzone = 20; // Deadzone threshold
31

32 //BUTTON INFO
33 #define SAM_BUTTON_PIN 3
34 #define JULIAN_BUTTON_PIN 4
35 #define JONAH_BUTTON_PIN 5
36 unsigned long buttonDelayMillis = 500;
37 unsigned long lastSamButtonMillis = 0;
38 unsigned long lastJulianButtonMillis = 0;
39 unsigned long lastJonahButtonMillis = 0;
40

41 void setup()
42 {
43 Serial.begin(9600);
44

45 //RF
46 radio.begin();
47 radio.setAutoAck(false);
48 radio.setDataRate(RF24_250KBPS);
49 radio.setPALevel(RF24_PA_MAX);
50 radio.setPayloadSize(sizeof(payload));
51 radio.setChannel(115);
52 radio.openWritingPipe(address);
53 radio.stopListening();
54

55 //BUTTON CONTROL
56 pinMode(SAM_BUTTON_PIN, INPUT_PULLUP);
57 pinMode(JULIAN_BUTTON_PIN, INPUT_PULLUP);
58 pinMode(JONAH_BUTTON_PIN, INPUT_PULLUP);
59 pinMode(JOYSTICK_BUTTON, INPUT);
60 }
61

62 void loop()
63 {
64 unsigned long currentMillis = millis();
65

66 int yValue = analogRead(JOYSTICK_X_PIN) - 512; // Center the joystick
67 int xValue = analogRead(JOYSTICK_Y_PIN) - 512; // Center the joystick
68

69 // Apply deadzone
70 xValue = (abs(xValue) < deadzone) ? 0 : xValue;
71 yValue = (abs(yValue) < deadzone) ? 0 : yValue;
72

73 // Map joystick values to motor speeds
74 int normalizedX = map(xValue, -512, 512, -255, 255);
75 int normalizedY = map(yValue, -512, 512, -255, 255); //Flip
76

77 int magnitude = constrain(sqrt(pow(normalizedX,2) + pow(normalizedY,2)),0,255);
78 int angle = atan2(normalizedY, normalizedX) * 180 / PI;
79 if(digitalRead(JOYSTICK_BUTTON))
80 payload.hornToggle = true;
81 else
82 payload.hornToggle = false;
83 if(digitalRead(SAM_BUTTON_PIN) == LOW && currentMillis - lastSamButtonMillis > buttonDelayMillis){

11

84 payload.robotSam = !payload.robotSam;
85 lastSamButtonMillis = currentMillis;
86 }
87 if(digitalRead(JULIAN_BUTTON_PIN) == LOW && currentMillis - lastJulianButtonMillis > buttonDelayMillis){
88 payload.robotJulian = !payload.robotJulian;
89 lastJulianButtonMillis = currentMillis;
90 }
91 if(digitalRead(JONAH_BUTTON_PIN) == LOW && currentMillis - lastJonahButtonMillis > buttonDelayMillis){
92 payload.robotJonah = !payload.robotJonah;
93 lastJonahButtonMillis = currentMillis;
94 }
95 if(magnitude == 0)
96 payload.stopDaMotors = true;
97 else{
98 payload.stopDaMotors = false;
99 payload.leftPWM = 255;

100 payload.rightPWM = 255;
101

102 volatile bool quadrant1 = angle<=90&&angle>=0;
103 volatile bool quadrant2 = angle<=180&&angle>90;
104 volatile bool quadrant3 = angle<=-90&&angle>-180;
105 volatile bool quadrant4 = angle<0&&angle>-90;
106

107 volatile bool shiftedQuadrant1 = angle<135&&angle>45;
108 volatile bool shiftedQuadrant2 = abs(angle)>135;
109 volatile bool shiftedQuadrant3 = angle<-45&&angle>-135;
110 volatile bool shiftedQuadrant4 = abs(angle)<45;
111

112 // Set motor directions based on the flags
113 payload.leftForward = quadrant3 || shiftedQuadrant3 || (quadrant1&&shiftedQuadrant4) ? true : false;
114 payload.rightForward = quadrant4 || shiftedQuadrant3 || (quadrant2&&shiftedQuadrant2) ? true : false;
115 payload.leftBackward = quadrant2 || shiftedQuadrant1 || (quadrant4&&shiftedQuadrant4) ? true : false;
116 payload.rightBackward = quadrant1 || shiftedQuadrant1 || (quadrant3&&shiftedQuadrant2) ? true : false;
117

118 //PWM
119 if(quadrant1||quadrant4){
120 payload.leftPWM = magnitude;
121 payload.rightPWM = abs(map(abs(angle),0,90,-255,255));
122 }
123 else{
124 payload.rightPWM = magnitude;
125 payload.leftPWM = abs(map(abs(angle),90,180,-255,255));
126 }
127 }
128

129 radio.write(&payload, sizeof(payload));
130 delay(INTERVAL_MS_TRANSMISSION);
131 }

D. Receiver Script

The receiver script implements the commands received from the transmitter. It controls motor directions and speeds
based on joystick input, and handles specific robot control logic based on the active robot selected by the transmitter.

1. Robot Specific Control

Each robot’s behavior can be customized by altering the condition within the if statement that checks which robot’s
control is active. For instance in the code outlined below, changing ‘robotJulian‘ to ‘robotSam‘ or ‘robotJonah‘ in the
receiver script tailors the control to the respective robot.

1 if(payload.stopDaMotors||!payload.robotJulian){
2 stopMotors();
3 }

12

2. Debugging and Monitoring

The system includes a ‘printPayload‘ function in the receiver script, which outputs the current state of all control
variables to the serial monitor. This function is crucial for debugging and ensures that all inputs and states are monitored
in real-time.

Receiver Code
1 #include "SPI.h"
2 #include "RF24.h"
3 #include "nRF24L01.h"
4

5 //RF INFO
6 #define CE_PIN 8
7 #define CSN_PIN A1
8 #define INTERVAL_MS_SIGNAL_LOST 0
9 #define INTERVAL_MS_SIGNAL_RETRY 0

10 RF24 radio(CE_PIN, CSN_PIN);
11 const byte address[6] = "11111";
12 struct payload {
13 int leftPWM = 0;
14 int rightPWM = 0;
15 bool leftForward = false;
16 bool rightForward = false;
17 bool leftBackward = false;
18 bool rightBackward = false;
19 bool hornToggle = false;
20 bool robotSam = false;
21 bool robotJulian = false;
22 bool robotJonah = false;
23 bool stopDaMotors = true;
24 };
25 payload payload;
26 unsigned long lastSignalMillis = 0;
27

28 //ROBOT INFO
29 #define LEFT_FORWARD_PIN 17
30 #define LEFT_BACKWARD_PIN 16
31 #define LEFT_PWM_PIN 10
32 #define RIGHT_FORWARD_PIN 7
33 #define RIGHT_BACKWARD_PIN 6
34 #define RIGHT_PWM_PIN 9
35 #define HORN_OUTPUT 3
36

37 void setup()
38 {
39 Serial.begin(9600);
40

41 //RF SETUP
42 radio.begin();
43 radio.setAutoAck(false);
44 radio.setDataRate(RF24_250KBPS);
45 radio.setPALevel(RF24_PA_MAX);
46 radio.setPayloadSize(sizeof(payload));
47 radio.setChannel(115);
48 radio.openReadingPipe(0, address);
49 radio.startListening();
50

51 //MOTOR SETUP
52 pinMode(LEFT_FORWARD_PIN, OUTPUT);
53 pinMode(LEFT_BACKWARD_PIN, OUTPUT);
54 pinMode(LEFT_PWM_PIN, OUTPUT);
55 pinMode(RIGHT_FORWARD_PIN, OUTPUT);
56 pinMode(RIGHT_BACKWARD_PIN, OUTPUT);
57 pinMode(RIGHT_PWM_PIN, OUTPUT);
58 pinMode(HORN_OUTPUT, OUTPUT);
59 }
60 void loop()

13

61 {
62 unsigned long currentMillis = millis();
63 if (radio.available() > 0) {
64 radio.read(&payload, sizeof(payload));
65 if(payload.stopDaMotors||!payload.robotJulian){
66 stopMotors();
67 }
68 else{
69 digitalWrite(LEFT_FORWARD_PIN, payload.leftForward ? HIGH : LOW);
70 digitalWrite(RIGHT_FORWARD_PIN, payload.rightForward ? HIGH : LOW);
71 digitalWrite(LEFT_BACKWARD_PIN, payload.leftBackward ? HIGH : LOW);
72 digitalWrite(RIGHT_BACKWARD_PIN, payload.rightBackward ? HIGH : LOW);
73 analogWrite(LEFT_PWM_PIN, payload.leftPWM);
74 analogWrite(RIGHT_PWM_PIN, payload.rightPWM);
75

76 if(payload.hornToggle)
77 tone(HORN_OUTPUT, 2500);
78 else
79 noTone(HORN_OUTPUT);
80 }
81 printPayload();
82 lastSignalMillis = currentMillis;
83 }
84 else if (currentMillis - lastSignalMillis > INTERVAL_MS_SIGNAL_LOST) {
85 lostConnection();
86 }
87 }
88

89 void stopMotors() {
90 digitalWrite(LEFT_FORWARD_PIN, LOW);
91 digitalWrite(RIGHT_FORWARD_PIN, LOW);
92 digitalWrite(LEFT_BACKWARD_PIN, LOW);
93 digitalWrite(RIGHT_BACKWARD_PIN, LOW);
94 payload.leftPWM = 0;
95 payload.rightPWM = 0;
96 }
97

98 void printPayload()
99 {

100 Serial.println("Received Payload");
101 Serial.print("Left PWM:");
102 Serial.println(payload.leftPWM);
103 Serial.print("Right PWM:");
104 Serial.println(payload.rightPWM);
105 Serial.print("Left Forward:");
106 Serial.println(payload.leftForward);
107 Serial.print("Right Forward:");
108 Serial.println(payload.rightForward);
109 Serial.print("Left Backward:");
110 Serial.println(payload.leftBackward);
111 Serial.print("Right Backward:");
112 Serial.println(payload.rightBackward);
113 Serial.print("Sam Button:");
114 Serial.println(payload.robotSam);
115 Serial.print("Julian Button:");
116 Serial.println(payload.robotJulian);
117 Serial.print("Jonah Button:");
118 Serial.println(payload.robotJonah);
119 Serial.print("STOP:");
120 Serial.println(payload.stopDaMotors);
121 Serial.println("=====================");
122 }
123

124 void lostConnection()
125 {
126 Serial.println("We have lost connection, preventing unwanted behavior");
127 stopMotors();
128 delay(INTERVAL_MS_SIGNAL_RETRY);

14

129 }

E. The Remote

Outlined below is a picture of the remote showcasing the three buttons, joystick and antenna all connected through the
arduino nano every.

Fig. 6 Remote

15

F. The Robot

Here is a picture of Sam’s robot showcasing the RF antenna mounted. Both Jonah’s and Julian’s robots have the same
pinout and structure.

Fig. 7 Robot

16

V. Tank Drive Configuration
This remote system was based on a typical tank control. The remote has 2 joysticks connected to the Arduino, and only
its x-direction voltage is registered by the Arduino. These two values are sent over RF via the transmitter antenna using
the Transmitter Code:

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 //create an RF24 object
6 RF24 radio(9, 8); // CE, CSN
7

8 //address through which two modules communicate.
9 const byte address[6] = "11001";

10

11 const int joystickL = A1;
12 const int joystickR = A0;
13 int xb = 0;
14 int yb = 0;
15 // Variable initialization
16

17 void setup() {
18

19 SPI.begin();
20 Serial.begin(9600);
21

22 radio.begin();
23 radio.setAutoAck(false);
24 radio.setPALevel(RF24_PA_MAX);//Transmitter RF Power Setting
25 //MIN=-18dBm, LOW=-12dBm, HIGH=-6dBm, MAX=0dBm.
26 radio.setChannel(15); //above most WiFi frequencies. RF Channel setting 0-125
27 radio.setDataRate(RF24_250KBPS);
28

29 //set the address
30 radio.openWritingPipe(address);
31

32 //Set module as transmitter
33 radio.stopListening();
34

35 }
36

37 void loop() {
38

39 xb = analogRead(joystickL);
40 yb = analogRead(joystickR);
41 // Serial.print(xb);
42 // Serial.print(" || ");
43 // Serial.println(yb);
44 // Centers position in joystick coordinate frame
45

46 //Send message to receiver
47 int data[2]; // Declare the array
48 data[0] = xb; // Store xb
49 data[1] = yb; // Store yb
50 radio.write((uint8_t *)&data, sizeof(data));
51

52 }

Figure 8 shows the transmitting remote for the Tank Drive Configuration. Each joystick is responsible for the forwards
and backwards control and movement of their corresponding left and right wheels.

17

Fig. 8 Gabe’s Remote

The receiver antenna meanwhile receives both values sent using the same packet and adjusts the forwards and backwards
direction control depending on whether the joystick (and its subsequent value) is angled forwards or backwards. This is
also done individually and simultaneously (assuming infinitely small calculation time) for each set of wheels (both right
and left side). The receiver code is as follows:

1 //Include Libraries
2 #include <nRF24L01.h>
3 #include <RF24.h>
4 #include <SPI.h>
5

6 //create an RF24 object
7 RF24 radio(10, A1); // CE, CSN
8

9 //address through which two modules communicate.
10 const byte address[6] = "11001";
11

12 const int dead = 20;
13 const int pinLeftForward = 8;
14 const int pinLeftBackward = 9;
15 const int pinLeftPWM = 3;
16 const int pinRightForward = 4;
17 const int pinRightBackward = 5;
18 const int pinRightPWM = 6;
19

20 int xL = 0;
21 int xR = 0;
22

23 void setup() {
24

25 SPI.begin();
26 Serial.begin(9600);
27

28 pinMode(pinLeftForward, OUTPUT);
29 pinMode(pinLeftBackward, OUTPUT);

18

30 pinMode(pinLeftPWM, OUTPUT);
31 pinMode(pinRightForward, OUTPUT);
32 pinMode(pinRightBackward, OUTPUT);
33 pinMode(pinRightPWM, OUTPUT);
34

35 digitalWrite(pinLeftForward, LOW);
36 digitalWrite(pinRightForward, LOW);
37 digitalWrite(pinLeftBackward, LOW);
38 digitalWrite(pinRightBackward, LOW);
39

40 analogWrite(pinLeftPWM, 0);
41 analogWrite(pinRightPWM, 0);
42

43 radio.begin();
44 radio.setAutoAck(false);
45 radio.setPALevel(RF24_PA_MAX); //Transmitter RF Power Setting
46 //MIN=-18dBm, LOW=-12dBm, HIGH=-6dBm, MAX=0dBm.
47 radio.setChannel(15); //above most WiFi frequencies. RF Channel setting 0-125
48 radio.setDataRate(RF24_250KBPS);
49

50 //set the address
51 radio.openReadingPipe(0, address);
52

53 //Set module as receiver
54 radio.startListening();
55

56 delay(1000);
57

58 }
59

60 void loop() {
61

62 if (radio.available()) {
63

64 // Serial.println("Radio established");
65

66 int data[2]; // Declare an array to hold the received data
67 radio.read((uint8_t *)&data, sizeof(data)); // Read the binary data into the array
68

69 xL = data[0] - 511;
70 xR = data[1] - 511;
71 Serial.print(xL);
72 Serial.print(" || ");
73 Serial.println(xR);
74

75 }
76

77 // xL = (abs(xL) < dead) ? 0 : xL;
78 // xR = (abs(xR) < dead) ? 0 : xR;
79

80 if (xL > dead) {
81 digitalWrite(pinLeftForward, HIGH);
82 digitalWrite(pinLeftBackward, LOW);
83 analogWrite(pinLeftPWM, 255);
84 }
85 else if (xL < -dead) {
86 digitalWrite(pinLeftForward, LOW);
87 digitalWrite(pinLeftBackward, HIGH);
88 analogWrite(pinLeftPWM, 255);
89 }
90 else{
91 digitalWrite(pinLeftForward, LOW);
92 digitalWrite(pinLeftBackward, LOW);
93 analogWrite(pinLeftPWM, 0);
94 }
95

96 if (xR > dead) {
97 digitalWrite(pinRightForward, HIGH);

19

98 digitalWrite(pinRightBackward, LOW);
99 analogWrite(pinRightPWM, 255);

100 }
101 else if (xR < -dead) {
102 digitalWrite(pinRightForward, LOW);
103 digitalWrite(pinRightBackward, HIGH);
104 analogWrite(pinRightPWM, 255);
105 }
106 else{
107 digitalWrite(pinRightForward, LOW);
108 digitalWrite(pinRightBackward, LOW);
109 analogWrite(pinRightPWM, 0);
110 }
111

112 }

Unfortunately, this code did not work 100% of the time. On certain days in the same locations the system would work
properly while on other days it would fail. The most common error that this method encountered was the receiver
antenna receiving 0’s despite the transmitting antenna being off. This cannot be attributed to a "lack of a signal" as the
receiver antenna is looking for a specific sequence of bits before the payload before loading the data in. Yet somehow
the receiver would still receive 0’s for an unknown reason.

Despite this, this system did work occasionally. The other common problem was a stuttering for the robot, where it
would receive 0’s intermittently between correct data, leading to a staggering forwards and backwards jittering with a
slight net movement in the desired direction.

We believe that if the issue of receiving 0’s randomly could be identified and solved this system would work properly
100% of the time, as it does work occasionally, just not consistently enough to be deemed a success.

VI. Challenges & Lessons Learned
This section reflects on the key challenges and valuable lessons learned throughout our project with the nRF24L01+
module. Each experience has significantly contributed to our understanding of wireless communication technologies
and practical problem-solving skills in electronics.

A. Testing NRF24L01 Modules

This section outlines the procedure used to evaluate the performance of antennas connected to the nRF24L01+ radio
module via an Arduino platform. The process involves a spectrum analysis across multiple radio channels to assess both
antenna functionality and environmental interference.

1. Setup

The Arduino is programmed to interface with the nRF24L01+ module, employing the following key configurations:
• Serial Communication: Initiated at 9600 baud to facilitate data output.
• Radio Initialization: The RF24 library functions are utilized to start and configure the radio.
• Listening Mode: The radio is set to listen briefly on each channel to detect any carrier signals indicating activity.

2. Testing Process

Channel testing is executed through a scripted loop that performs the following steps for each of the 128 channels:
1) Set the radio to the specific channel.
2) Enable listening mode for a short duration (128 microseconds).
3) Check for the presence of carrier signals.
4) Record the results in an array, incrementing the count for channels where a signal was detected.

This process is repeated multiple times (100 repetitions) to ensure accuracy and reliability of the results. Further, this
entire process is repeated until the output looks desirable. Here’s an example of what desirable looks like:

20

Fig. 9 Desirable Program Setup Output

Fig. 10 Desirable Noise Output

3. Data Output

Post-testing, the collected data are displayed via the serial monitor of the Arduino IDE, showing the detected activity for
each channel in hexadecimal format. This output helps in identifying channels with significant environmental noise and
verifying the effective range of the antenna.

4. Importance of the Test

The test is crucial for:
• Verifying the correct functionality and optimal placement of antennas.
• Ensuring proper connections and operational integrity of the Arduino and nRF24L01+ module.
• Assessing the environmental conditions that may affect wireless communications.

21

5. Conclusion

This testing procedure is an essential part of setting up and maintaining robust wireless communication systems using
the nRF24L01+ module, ensuring both hardware compatibility and environmental suitability.

6. The Code

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 RF24 radio(10,A1); // for arduino nano every
6 //RF24 radio(9,10); // for arduino uno
7

8 const uint8_t num_channels = 128;
9 uint8_t values[num_channels];

10 void setup(void)
11 {
12 Serial.begin(9600);
13 printf_begin();
14 radio.begin();
15 radio.setAutoAck(false);
16 radio.startListening();
17

18 radio.printDetails();
19 delay(5000);
20

21 radio.stopListening();
22 int i = 0;
23 while (i < num_channels) {
24 printf("%x",i>>4);
25 ++i;
26 }
27 printf("\n\r");
28 i = 0;
29 while (i < num_channels) {
30 printf("%x",i&0xf);
31 ++i;
32 }
33 printf("\n\r");
34 }
35 const int num_reps = 100;
36

37 void loop(void)
38 {
39 memset(values,0,sizeof(values));
40 int rep_counter = num_reps;
41 while (rep_counter--) {
42 int i = num_channels;
43 while (i--) {
44 radio.setChannel(i);
45 radio.startListening();
46 delayMicroseconds(128);
47 radio.stopListening();
48 if (radio.testCarrier())
49 ++values[i];
50 }
51 }
52 int i = 0;
53 while (i < num_channels) {
54 printf("%x",min(0xf,values[i]&0xf));
55 ++i;
56 }
57 printf("\n\r");
58 }
59 int serial_putc(char c, FILE *) {
60 Serial.write(c);

22

61 return c;
62 }
63

64 void printf_begin(void) {
65 fdevopen(&serial_putc, 0);
66 }

B. Arduino Uno vs Arduino Nano Every

1. Introduction

This document presents findings from testing the nRF24L01+ module with Arduino platforms, focusing on the necessary
pin configurations for effective operation. Special attention is given to the differences in pin configuration requirements
between the Arduino Nano Every and the Arduino Uno.

2. Testing Results

The testing program implemented on both Arduino Nano Every and Arduino Uno revealed crucial differences in the
Chip Select Not (CSN) pin configuration. It was determined that for the Arduino Nano Every, the CSN pin needs to be
connected specifically to either pin A0 or A1. This configuration differs from that typically used in the Arduino Uno,
where CSN is often connected to digital pins such as pin 10.

3. Arduino Board Differences

The Arduino Uno is based on the ATmega328P microcontroller, whereas the Arduino Nano Every is equipped with the
more powerful ATmega4809. This difference in microcontroller technology influences not only the performance but
also the pinout and functionality across the boards.

4. Importance of Testing Program

The testing program was crucial in identifying the specific pin requirements for the nRF24L01+ on the Arduino
Nano Every. By systematically testing various configurations, the program enabled pinpointing the optimal CSN pin
connection, thus ensuring reliable communication with the radio module.

C. Lessons Learned

As a team, our key takeaways from this project are multifaceted and significantly enhance our understanding of both
the theoretical and practical aspects of wireless communication using the nRF24L01+ module. Below, we outline our
primary lessons:

• Joystick Calibration and Implementation: We learned to set and calibrate a joystick using the principles of the
unit circle. This exercise not only improved our understanding of geometric principles in a practical setting but
also allowed us to develop custom code that effectively translates joystick movements into digital commands. This
skill is crucial for projects requiring precise control over inputs.

• Debugging and Utilization of the nRF24L01+: Throughout the project, we encountered and overcame various
challenges associated with the nRF24L01+ module. These included issues with signal integrity, interference, and
hardware compatibility. Our ability to debug these problems has enhanced our troubleshooting skills and our
understanding of the module’s operational parameters.

• Exploration of Wireless Connection Options: We explored various options for wireless connections, comparing
the nRF24L01+ with other technologies such as Wi-Fi and Bluetooth. This comparison gave us insights into
selecting the appropriate wireless technology based on factors like range, data rate, power consumption, and
overall system requirements.

• Handling RF Signals: Dealing with radio frequency signals taught us about the complexities of RF design,
including antenna placement, frequency selection, and the mitigation of environmental interference. These skills
are vital for any work involving wireless communications.

23

These experiences have collectively broadened our technical expertise and prepared us for more advanced projects in
wireless systems and embedded electronics.

VII. Conclusion
In today’s technological landscape, the role of radio-frequency antennas and transmission systems cannot be overstated,
facilitating seamless communication across various devices over significant distances. Our laboratory immersion
provided a firsthand understanding of this technology, guiding us through its practical applications and the hurdles
encountered. From troubleshooting signal interference to extending transmission ranges, we confronted these challenges
head-on, fostering a culture of innovation and problem-solving.

Within the laboratory’s controlled environment, we learned to operate radio-frequency systems and cultivated the skills
necessary to adapt and innovate in the face of adversity. This hands-on experience went beyond theoretical knowledge,
instilling confidence born from practical application. As we grappled with real-world constraints, we devised unique
solutions, each obstacle serving as a stepping stone toward a deeper understanding of the technology.

Armed with this foundational knowledge and practical experience, we are poised to navigate the ever-evolving landscape
of technology with confidence and competence. By immersing ourselves in radio-frequency systems early on, we have
laid the groundwork for future success, reducing the barriers to entry and accelerating our trajectory toward innovation.
Whether in academic research, industrial applications, or entrepreneurial ventures, our proficiency in radio- frequency
communication positions us as catalysts for progress in an interconnected world.

24

	Introduction
	Materials
	Theory and Application
	Joystick Control Implementation
	Simple Approach
	Complex Approach
	The Code

	Horn Implemention
	Overview
	Setup Configuration
	Operational Details
	Functionality
	The Code

	RF Implementation
	Introduction
	The Code
	Problem Identification
	Channel Interference
	Channel Optimization Strategy
	Benefits
	Conclusion

	Sam, Jonah, and Julian's Remote
	Introduction
	System Overview
	Transmitter Script
	Key Features
	Transmitter Code

	Receiver Script
	Robot Specific Control
	Debugging and Monitoring

	The Remote
	The Robot

	Tank Drive Configuration
	Challenges & Lessons Learned
	Testing NRF24L01 Modules
	Setup
	Testing Process
	Data Output
	Importance of the Test
	Conclusion
	The Code

	Arduino Uno vs Arduino Nano Every
	Introduction
	Testing Results
	Arduino Board Differences
	Importance of Testing Program

	Lessons Learned

	Conclusion

