
University of Colorado - Boulder

ECEN 2270
Electronics Lab | Spring 2024

ECEN 2270 Electronics Lab: Lab 4

Team Papa:
Gabriel Agostine
Sam Walker
Julian Werder
Jonah Yunes

Lab Instructor:
Steven Dunbar

Lab: Section 12

Sunday, March 21, 2024

I. Introduction
Experiment A dives into the integration of Arduino Nano Every for controlling robotic movements, highlighting the
practical application of interrupts in microcontroller programming. We will build a compensator and tachometer circuit
on the other side of the robot, which are crucial for balancing motion control and for precise speed measurements.
This experiment serves as a fundamental introduction to Arduino and interrupts, focusing on their utility for handling
time-sensitive tasks efficiently without constant polling. We also explore position control using Arduino’s time delay
capabilities, which allows for refined maneuvering of the robot through timed programming adjustments.

In Experiment B, our focus shifts to more advanced applications of interrupts in robotics, particularly for position
control. We implement interrupts to accurately count encoder pulses, a vital aspect of gauging the robot’s position and
movement. Additionally, we use comparators as level shifters to facilitate this process. This setup allows us to employ
encoder pulses for precise position control, enhancing the robot’s ability to navigate and perform tasks with higher
accuracy. Later, advanced position control strategies push the boundaries of what can be achieved with extra fine tuning
of our encoder parameters to test our robots control capabilities.

II. Experiment A

A. Exploration Topic: Interrupts

1) What are hardware and software interrupts, and how do they differ?
Hardware Interrupts:

• Signals from hardware devices to CPU.
• Asynchronous events triggered by hardware.
• Temporarily halts current CPU operation.
• Handled by interrupt service routines.
• Managed by hardware, often via interrupt controllers.

Software Interrupts:
• Generated by the software itself.
• Synchronous events are initiated by executing specific instructions.
• Switches CPU to kernel mode.
• Handled by OS interrupt handlers.
• Used for system calls, error handling, and signaling within programs.

2) What is polling?
Polling is the process where the computer or controlling device waits for an external device to check for its
readiness or state, often with low-level hardware. For example, when a printer is connected via a parallel port,
the computer waits until the printer has received the next character.

3) How does an interrupt work?
An interrupt is an event that alters the sequence in which the processor executes instructions.

4) What happens in the microcontroller program execution when an interrupt occurs?
The program stops executing and the microcontroller begins to execute the ISR.

5) What is the interrupt structure of the Arduino Nano Every?
1 attachInterrupt(iPin,service,FALLING); // Falling edge at iPin

6) Write a simple Arduino program that demonstrates the use of interrupts.
1 const int buttonPin = 2; // the pin number of the pushbutton
2 volatile int buttonState = 0; // variable for reading the pushbutton status
3

4 void setup() {
5 pinMode(buttonPin, INPUT);
6 attachInterrupt(digitalPinToInterrupt(buttonPin), buttonInterrupt, CHANGE);
7 Serial.begin(9600);
8 }
9

1

10 void loop() {
11 // Main program will continue running while the interrupt is waiting
12 }
13

14 void buttonInterrupt() {
15 buttonState = digitalRead(buttonPin);
16 Serial.print("Button state changed: ");
17 Serial.println(buttonState);
18 }

B. 4.A.2

Here is the Feedback controller, tachometer, and direction control builts on both sides:

2

Fig. 1

C. 4.A.3

1 // the setup function runs once when you press reset or power the board
2 void setup() {
3 // initialize digital pin LED_BUILTIN as an output.
4 pinMode(LED_BUILTIN, OUTPUT);
5 }
6

7 // the loop function runs over and over again forever

3

8 void loop() {
9 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

10 delay(2000); // wait for a second
11 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
12 delay(200); // wait for a second
13 }

D. 4.A.4

Fig. 2

4

E. 4.A.5

We use an Arduino Nano Every in order to command and control our robot and its direction control. As documented in
previous reports, our closed-loop feedback control system has a reference voltage input. We can vary this reference
voltage by varying the duty cycle of an outputted PWM signal from an Arduino. Thus, we must design a Low Pass
Filter so that the output waveform is a constant DC voltage with a ripple voltage less than 100 mV.

We can define ripple voltage for a square wave as the difference between the maximum amplitude (5 V) of the squarewave
and the voltage across a capacitor 𝑡𝑜 𝑓 𝑓 seconds after the falling edge of the PWM signal. This can be expressed as:

𝑉𝑟𝑖 𝑝 = 𝑉𝑖

(
1 − 𝑒𝑥𝑝

(
%𝐷𝐶

100 𝑓 𝑅𝐶

))
For 𝑉𝑖 = 5 V, 𝑉𝑟𝑖 𝑝 = 0.1 V, f = 970 Hz, 50% Duty Cycle Wave and we assume C = 10µF; R = 2550W.

F. 4.A.6

Using the following code, we are able to confirm that both the left and right sides of our robots (specifically their
corresponding circuits and motors) behave as expected.

1 // pin definitions
2 const int pinRightPWM = 9;
3 const int pinLeftPWM = 10;
4 const int value = 204;
5

6 void setup() {
7 // put your setup code here, to run once:
8 pinMode(pinRightPWM, OUTPUT);
9 pinMode(pinLeftPWM, OUTPUT);

10 analogWrite(pinRightPWM, value); // Vref = 5*(value/255)
11 analogWrite(pinLeftPWM, value); // Vref = 5*(value/255)
12 }
13

14 void loop() {
15 // put your main code here, to run repeatedly:
16 }

We also changed the values of 𝑅2 and 𝐶2 within our speed control circuit so that at maximum speed it outputs 5V, to be
consistent with our Arduino’s PWM waveform. This was achieved by changing 𝑅2 to 30kW and 𝐶2 to 10nF.

𝑉𝑟𝑒 𝑓 [V] 𝑓𝑒𝑛𝑐𝐿𝑒 𝑓 𝑡
[Hz] 𝑓𝑒𝑛𝑐𝑅𝑖𝑔ℎ𝑡

[Hz]
1 278 353
2 524 649
3 783 950
4 1027 1257
5 1369 1585

Table 1 Wheel spin speed confirmation

The frequency values seen in Table 1 show that the spin rates of the two motors are indeed not the same. While they
are somewhat close, this means that we will likely have to account for positional error between the motors within the
algorithm.

5

G. 4.A.7

Fig. 3

H. 4.A.8
1 const int pinON = 6;
2 const int pinLeftForward = 11;
3 const int pinLeftBackward = 12;
4 const int pinLeftPWM = 10;
5 const int pinRightForward = 7;
6 const int pinRightBackward = 8;
7 const int pinRightPWM = 9;
8

9 void setup() {
10 // put your setup code here, to run once:
11 pinMode(pinON,INPUT_PULLUP);
12 pinMode(pinLeftForward, OUTPUT);
13 pinMode(pinLeftBackward, OUTPUT);
14 pinMode(pinLeftPWM, OUTPUT);
15 pinMode(13, OUTPUT);
16 digitalWrite(pinLeftForward, LOW);

6

17 digitalWrite(pinLeftBackward, LOW);
18 analogWrite(pinLeftPWM, 4.5*51);
19

20

21 pinMode(pinRightForward, OUTPUT);
22 pinMode(pinRightBackward, OUTPUT);
23 pinMode(pinRightPWM, OUTPUT);
24 digitalWrite(pinRightForward, LOW);
25 digitalWrite(pinRightBackward, LOW);
26 analogWrite(pinRightPWM, 4.5*51);
27 }
28

29 void loop() {
30 // put your main code here, to run repeatedly:
31 digitalWrite(13, LOW);
32 do {} while (digitalRead(pinON) == HIGH);
33 digitalWrite(13, HIGH);
34

35 // Wait 1 second
36 delay(1000);
37

38 // Perform 360 deg clockwise rotation of the robot
39 rotateClockwise();
40

41 // Stop and wait 1 second
42 stopMotors();
43 delay(1000);
44

45 // Perform 360 deg counter-clockwise rotation of the robot
46 rotateCounterClockwise();
47

48 // Stop and wait 1 second
49 stopMotors();
50 delay(1000);
51

52 }
53 void rotateClockwise() {
54 digitalWrite(pinRightForward, LOW);
55 digitalWrite(pinLeftBackward, LOW);
56 digitalWrite(pinLeftForward, HIGH);
57 digitalWrite(pinRightBackward, HIGH);
58

59 delay(4000); // Adjust the delay according to your robot’s rotation speed
60 }
61

62 void rotateCounterClockwise() {
63 digitalWrite(pinLeftForward, LOW);
64 digitalWrite(pinRightBackward, LOW);
65 digitalWrite(pinLeftBackward, HIGH);
66 digitalWrite(pinRightForward, HIGH);
67

68 delay(4000); // Adjust the delay according to your robot’s rotation speed
69 }
70

71 void stopMotors() {
72 digitalWrite(pinLeftForward, LOW);
73 digitalWrite(pinRightForward, LOW);
74 digitalWrite(pinLeftBackward, LOW);
75 digitalWrite(pinRightBackward, LOW);
76 }

7

I. 4.A.9

Fig. 4

1 const int pinON = 6;
2 const int pinLeftForward = 11;
3 const int pinLeftBackward = 12;
4 const int pinLeftPWM = 10;
5 const int pinRightForward = 7;
6 const int pinRightBackward = 8;
7 const int pinRightPWM = 9;
8

9

10 void setup() {
11 // put your setup code here, to run once:
12 pinMode(pinON,INPUT_PULLUP);
13 pinMode(pinLeftForward, OUTPUT);
14 pinMode(pinLeftBackward, OUTPUT);
15 pinMode(pinLeftPWM, INPUT);
16 pinMode(13, OUTPUT);
17 digitalWrite(pinLeftForward, LOW);
18 digitalWrite(pinLeftBackward, LOW);
19 analogWrite(pinLeftPWM, 5*51);
20

21

22 pinMode(pinRightForward, OUTPUT);
23 pinMode(pinRightBackward, OUTPUT);
24 pinMode(pinRightPWM, INPUT);
25 digitalWrite(pinRightForward, LOW);
26 digitalWrite(pinRightBackward, LOW);
27 analogWrite(pinRightPWM, 4.3*51);
28 }
29

30 void loop() {
31 digitalWrite(13, LOW);
32 do {} while (digitalRead(pinON) == HIGH);
33 digitalWrite(13, HIGH);
34

35 goForward(1875);
36

37 delay(1000);
38

39 rotateClockwise(1900);
40

41 delay(1000);
42

43 goForward(1875);
44

8

45 rotateCounterClockwise(1900);
46

47

48 // Stop and wait 1 second
49 stopMotors();
50 delay(1000);
51 }
52

53

54 void goForward(int tim) {
55 digitalWrite(pinLeftBackward, LOW);
56 digitalWrite(pinRightBackward, LOW);
57 digitalWrite(pinRightForward, HIGH);
58 digitalWrite(pinLeftForward, HIGH);
59 delay(tim);
60 }
61 void rotateClockwise(int tim) {
62 digitalWrite(pinRightForward, LOW);
63 digitalWrite(pinLeftBackward, LOW);
64 digitalWrite(pinLeftForward, HIGH);
65 digitalWrite(pinRightBackward, HIGH);
66

67 delay(tim); // Adjust the delay according to your robot’s rotation speed
68 }
69

70 void rotateCounterClockwise(int tim) {
71 digitalWrite(pinLeftForward, LOW);
72 digitalWrite(pinRightBackward, LOW);
73 digitalWrite(pinLeftBackward, HIGH);
74 digitalWrite(pinRightForward, HIGH);
75

76 delay(tim); // Adjust the delay according to your robot’s rotation speed
77 }
78

79 void stopMotors() {
80 digitalWrite(pinLeftForward, LOW);
81 digitalWrite(pinRightForward, LOW);
82 digitalWrite(pinLeftBackward, LOW);
83 digitalWrite(pinRightBackward, LOW);
84 }

The robot did indeed move forwards by roughly the commanded amount. However, without any gradual rise and fall in
motor speed, the robot was inevitably going to overshoot its target distance if not accounted for. Similarly, without
accounting for the differing rotation speeds of the motors on the left and right sides, the robot was also likely to veer to
one side or the other. Both of these problems will however be addressed and rectified in Experiment B.

III. Experiment B

A. 4.B.2

First starts to skip at around 45 kHz, slowly becomes more consistent until around 65 kHz, where it becomes very
obvious...

9

Fig. 5 First instance of bit skipping

Fig. 6 Significant bit skipping

1 volatile bool var=LOW;
2

3 void setup() {
4 pinMode(6, INPUT);
5 attachInterrupt(digitalPinToInterrupt(6), service6, RISING);
6 pinMode(13, OUTPUT);
7 }
8

9 void loop() {
10 digitalWrite(13, var);
11 }
12

13 // Interrupt Service Routine
14 void service6() {
15 var = ! var;
16 }

The overhead of the Interrupt Service Routine (ISR) for the Arduino Nano Every was determined to be about 15.4-22.2µs.
This was determined by finding the first frequency that bit skipping starts to occur and the frequency that it becomes
more apparent and finding the time in seconds from these frequencies. This assumes that the process "var = !var;" in the
above code has negligible computation time.

10

B. 4.B.3

1 volatile float pL = 0;
2 volatile float pR = 0;
3 const float it = 0.00021; // [m]
4 const float target = 0.305; // [m]
5

6 const int pinON = 6;
7 const int pinRightForward = 7;
8 const int pinRightBackward = 8;
9 const int pinRightPWM = 9;

10 const int pinLeftPWM = 10;
11 const int pinLeftForward = 11;
12 const int pinLeftBackward = 12;
13

14 void setup() {
15 pinMode(pinON, INPUT_PULLUP);
16

17 pinMode(pinLeftForward, OUTPUT);
18 pinMode(pinLeftBackward, OUTPUT);
19 pinMode(pinLeftPWM, OUTPUT);
20

21 pinMode(pinRightForward, OUTPUT);
22 pinMode(pinRightBackward, OUTPUT);
23 pinMode(pinRightPWM, OUTPUT);
24

25 digitalWrite(pinLeftForward, LOW); // Stop Forward
26 digitalWrite(pinLeftBackward, LOW); // Stop Backward
27 digitalWrite(pinRightForward, LOW); // Stop Forward
28 digitalWrite(pinRightBackward, LOW); // Stop Backward
29 analogWrite(pinLeftPWM, 200); // Vref, Duty Cycle of 200/255
30 analogWrite(pinRightPWM, 200); // Vref, Duty Cycle of 200/255
31

32 attachInterrupt(digitalPinToInterrupt(2), counterR, RISING);
33 attachInterrupt(digitalPinToInterrupt(4), counterL, RISING);
34 Serial.begin(9600);
35 }
36

37 void loop() {
38 pL = 0;
39 pR = 0;
40 do {} while (digitalRead(pinON) == HIGH); // Wait for ON button
41 digitalWrite(pinLeftForward, HIGH); // Go clockwise
42 digitalWrite(pinLeftBackward, LOW); // Go clockwise
43 digitalWrite(pinRightForward, HIGH); // Go clockwise
44 digitalWrite(pinRightBackward, LOW); // Go clockwise
45 do {} while (pL * it <= target || pR * it <= target);
46 digitalWrite(pinLeftForward, LOW); // Go clockwise
47 digitalWrite(pinLeftBackward, LOW); // Go clockwise
48 digitalWrite(pinRightForward, LOW); // Go clockwise
49 digitalWrite(pinRightBackward, LOW); // Go clockwise
50 Serial.print(pL);
51 Serial.print(" || ");
52 Serial.println(pR);
53 }
54

55 void counterL() {
56 pL++;
57

58 }
59 void counterR() {
60 pR++;
61

62 }

In order to properly code our ISR’s, we must determine the number of CPU cycles in each ISR (left and right motors)
for programming and processes. This can be determined by first defining the maximum motor encoder frequency of
2250 Hz. This maximum frequency corresponds to the smallest timeframe for processes to occur. The way our code is

11

formatted causes the program to do nothing but run the service routine, meaning we may assume all resources (such as
CPU cycles and time) are allocated to the ISR’s. The minimum timeframe must then be 0.44 𝑚𝑠

𝑟𝑜𝑢𝑡𝑖𝑛𝑒
, which is divided

by two (one for each ISR) to be be 0.22 𝑚𝑠
𝑟𝑜𝑢𝑡𝑖𝑛𝑒

each.

Since the Arduino Nano Every has a built-in 20 MHz clock, this means that each CPU cycle is (regardless of Rising of
Falling Edge logic) 50 𝑛𝑠

𝑐𝑦𝑐𝑙𝑒
. Dividing 22 𝑚𝑠

𝑟𝑜𝑢𝑡𝑖𝑛𝑒
by 50 𝑛𝑠

𝑐𝑦𝑐𝑙𝑒
gives us 440000 𝑐𝑦𝑐𝑙𝑒𝑠

𝑟𝑜𝑢𝑡𝑖𝑛𝑒
. This assumes no other processes

are occurring while waiting for an ISR.

C. 4.B.4

In order to test the correct counting of pulses, we may set the robot to move forwards a set distance and count the
number of pulses (for each side) that were detected. Ideally these numbers are perfectly related and the distance that the
robot moves (in meters) is defined by:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.00021𝑁𝑝𝑢𝑙𝑠𝑒

The value of 0.00021 𝑚
𝑝𝑢𝑙𝑠𝑒

(or 0.21 𝑚𝑚
𝑝𝑢𝑙𝑠𝑒

) was derived from the "ideal" physical system parameters. Thus, we can
command the robot to drive 1 meter forwards and count the number of pulses as well as the actual distance forwards it
moved. Using the above equation, we can plug in the distance moved and the number of pulses and output the value of

𝑚
𝑝𝑢𝑙𝑠𝑒

. This value can be compared to our ideal value and changed if necessary.

Upon testing, we commanded the robot to move 1 foot (0.305 m) forwards. The robot itself moved 14 inches (1 foot and
2 inches) forwards and the left and right encoders experienced 1466 and 1453 pulses respectively.

Distance commanded [m] Recorded distance [m] Pulses𝑙𝑒 𝑓 𝑡 Pulses𝑟𝑖𝑔ℎ𝑡 𝑚
𝑝𝑢𝑙𝑠𝑒𝑙𝑒 𝑓 𝑡

𝑚
𝑝𝑢𝑙𝑠𝑒𝑟𝑖𝑔ℎ𝑡

0.305 0.36 1466 1453 0.000246 0.000248
Table 2 Distance Testing

From Table 2 we can see that the error between the left and right 𝑚
𝑝𝑢𝑙𝑠𝑒

values are on average 0.865%. We can then
surmise that this is insignificant enough so that we may assume they are the same. For future calculations we will use
the left encoder pulse value of 0.000246 𝑚

𝑝𝑢𝑙𝑠𝑒
.

With this, we may determine an error of 16.94% from our ideal case. We can account for this error by changing the
incremental value in the code or by accounting for error in the measurements. It should also be noted that the reasoning
for this error and overshoot of the robot is due to the immediate spin-up and stop of the motors. This will later be
accounted for by slowly spinning the motors up and down upon start and reaching the target value using Control Law.
Similarly, in code processes, different values for 𝑚

𝑝𝑢𝑙𝑠𝑒
will be used in order to account for manufacturing errors in the

motors as well as environmental conditions such as the friction of the floor.

D. 4.B.5

By changing specific lines (such as which left and right pins are forwards and backwards) we may command the robot to
move forwards, backwards and or spin left and right. We may also change the value of the variable "target" in order to
change the distance (or number of pulses the ISR has to receive) the robot needs to move.

1 #include <math.h>
2

3 volatile float pL = 0;
4 volatile float pR = 0;
5 const float itL = 0.000248; // [m]
6 const float itR = 0.000238; // [m]
7 float target = 0; // [m]
8 int i = 0;
9 float distL = 0; // [m]

10 float distR = 0; // [m]
11

12 const int pinON = 6;
13 const int pinRightForward = 7;

12

14 const int pinRightBackward = 8;
15 const int pinRightPWM = 9;
16 const int pinLeftPWM = 10;
17 const int pinLeftForward = 11;
18 const int pinLeftBackward = 12;
19

20 void setup() {
21

22 pinMode(pinON, INPUT_PULLUP);
23

24 pinMode(pinLeftForward, OUTPUT);
25 pinMode(pinLeftBackward, OUTPUT);
26 pinMode(pinLeftPWM, OUTPUT);
27

28 pinMode(pinRightForward, OUTPUT);
29 pinMode(pinRightBackward, OUTPUT);
30 pinMode(pinRightPWM, OUTPUT);
31

32 digitalWrite(pinLeftForward, LOW); // Stop Forward
33 digitalWrite(pinLeftBackward, LOW); // Stop Backward
34 digitalWrite(pinRightForward, LOW); // Stop Forward
35 digitalWrite(pinRightBackward, LOW); // Stop Backward
36

37 analogWrite(pinLeftPWM, 200);
38 analogWrite(pinRightPWM, 200);
39

40 attachInterrupt(digitalPinToInterrupt(2), counterR, RISING);
41 attachInterrupt(digitalPinToInterrupt(4), counterL, RISING);
42 Serial.begin(9600);
43

44 }
45

46 void loop() {
47

48 target = 0.61; // [m]
49 i = 0;
50 pL = 0;
51 pR = 0;
52 distL = 0;
53 distR = 0;
54

55 do {} while (digitalRead(pinON) == HIGH); // Wait for ON button
56

57 digitalWrite(pinLeftForward, HIGH); // Go clockwise
58 digitalWrite(pinLeftBackward, LOW); // Go clockwise
59 digitalWrite(pinRightForward, HIGH); // Go clockwise
60 digitalWrite(pinRightBackward, LOW); // Go clockwise
61

62 while (i <= 10) {
63 analogWrite(pinLeftPWM, 20*i); // Vref, Duty Cycle of 100x/255
64 analogWrite(pinRightPWM, 20*i); // Vref, Duty Cycle of 100x/255
65 i++;
66 delay(10);
67 }
68

69 while (pL * itL <= target || pR * itR <= target) {
70 distL = target - pL * itL;
71 if (distL < 0) {
72 distL = 0;
73 }
74 distR = target - pR * itR;
75 if (distR < 0) {
76 distR = 0;
77 }
78 analogWrite(pinLeftPWM, 255 * (1 - exp(-(distL * 100) / 3))); // Vref, Duty Cycle of 100x/255
79 analogWrite(pinRightPWM, 255 * (1 - exp(-(distR * 100) / 3))); // Vref, Duty Cycle of 100x/255
80 }
81

13

82 digitalWrite(pinLeftForward, LOW); // Go clockwise
83 digitalWrite(pinLeftBackward, LOW); // Go clockwise
84 digitalWrite(pinRightForward, LOW); // Go clockwise
85 digitalWrite(pinRightBackward, LOW); // Go clockwise
86

87 }
88

89 void counterL() {
90 pL++;
91 }
92 void counterR() {
93 pR++;
94 }

Next we wish to test the accuracy of our code by commanding the robot to move forwards and backwards a commanded
amount. The results of these tests are as follows:

Commanded movement Measured movement
0.61 m 0.61 m
-0.61 m -0.61 m

360◦ 361◦

Table 3 Movement Testing

As seen in Table 3, our tests confirm that our robot moves as we would expect. For the forwards and backwards
movement tests the average error is 0% and for the rotational tests the average error is 0.278%. This tells us the positional
movement tests are very accurate, with the rotation tests being slightly less accurate. This is understandable however as
rotational motion has more complexities and sources of error to be accounted for than linear motion.

E. 4.B.6

Lastly, we wish to test the repeatability and linearity of our code by commanding the robot to undergo a series of
processes such as moving forwards 2 feet, spinning 180◦, moving 2 feet forwards again and then spinning around 180◦
one more time. The code to execute that process is seen below:

1 #include <math.h>
2

3 volatile float pL = 0;
4 volatile float pR = 0;
5 const float itL = 0.000248; // [m]
6 const float itR = 0.000238; // [m]
7 float target = 0; // [m]
8 int i = 0;
9 float distL = 0; // [m]

10 float distR = 0; // [m]
11

12 const int pinON = 6;
13 const int pinRightForward = 7;
14 const int pinRightBackward = 8;
15 const int pinRightPWM = 9;
16 const int pinLeftPWM = 10;
17 const int pinLeftForward = 11;
18 const int pinLeftBackward = 12;
19

20 void setup() {
21

22 pinMode(pinON, INPUT_PULLUP);
23

24 pinMode(pinLeftForward, OUTPUT);
25 pinMode(pinLeftBackward, OUTPUT);
26 pinMode(pinLeftPWM, OUTPUT);
27

28 pinMode(pinRightForward, OUTPUT);

14

29 pinMode(pinRightBackward, OUTPUT);
30 pinMode(pinRightPWM, OUTPUT);
31

32 digitalWrite(pinLeftForward, LOW); // Stop Forward
33 digitalWrite(pinLeftBackward, LOW); // Stop Backward
34 digitalWrite(pinRightForward, LOW); // Stop Forward
35 digitalWrite(pinRightBackward, LOW); // Stop Backward
36

37 analogWrite(pinLeftPWM, 200);
38 analogWrite(pinRightPWM, 200);
39

40 attachInterrupt(digitalPinToInterrupt(2), counterR, RISING);
41 attachInterrupt(digitalPinToInterrupt(4), counterL, RISING);
42 Serial.begin(9600);
43

44 }
45

46 void loop() {
47

48 target = 0.61; // [m]
49 i = 0;
50 pL = 0;
51 pR = 0;
52 distL = 0;
53 distR = 0;
54

55 do {} while (digitalRead(pinON) == HIGH); // Wait for ON button
56

57 digitalWrite(pinLeftForward, HIGH); // Go clockwise
58 digitalWrite(pinLeftBackward, LOW); // Go clockwise
59 digitalWrite(pinRightForward, HIGH); // Go clockwise
60 digitalWrite(pinRightBackward, LOW); // Go clockwise
61

62 while (i <= 10) {
63 analogWrite(pinLeftPWM, 20*i); // Vref, Duty Cycle of 100x/255
64 analogWrite(pinRightPWM, 20*i); // Vref, Duty Cycle of 100x/255
65 i++;
66 delay(10);
67 }
68

69 while (pL * itL <= target || pR * itR <= target) {
70 distL = target - pL * itL;
71 if (distL < 0) {
72 distL = 0;
73 }
74 distR = target - pR * itR;
75 if (distR < 0) {
76 distR = 0;
77 }
78 analogWrite(pinLeftPWM, 255 * (1 - exp(-(distL * 100) / 3))); // Vref, Duty Cycle of 100x/255
79 analogWrite(pinRightPWM, 255 * (1 - exp(-(distR * 100) / 3))); // Vref, Duty Cycle of 100x/255
80 }
81

82 target = 0.12*3.14; // [m]
83 i = 0;
84 pL = 0;
85 pR = 0;
86 distL = 0;
87 distR = 0;
88

89 digitalWrite(pinLeftForward, LOW); // Go clockwise
90 digitalWrite(pinLeftBackward, HIGH); // Go clockwise
91 digitalWrite(pinRightForward, HIGH); // Go clockwise
92 digitalWrite(pinRightBackward, LOW); // Go clockwise
93

94 while (i <= 10) {
95 analogWrite(pinLeftPWM, 20*i); // Vref, Duty Cycle of 100x/255
96 analogWrite(pinRightPWM, 20*i); // Vref, Duty Cycle of 100x/255

15

97 i++;
98 delay(10);
99 }

100

101 while (pL * itL <= target || pR * itR <= target) {
102 distL = target - pL * itL;
103 if (distL < 0) {
104 distL = 0;
105 }
106 distR = target - pR * itR;
107 if (distR < 0) {
108 distR = 0;
109 }
110 analogWrite(pinLeftPWM, 255 * (1 - exp(-(distL * 100) / 3))); // Vref, Duty Cycle of 100x/255
111 analogWrite(pinRightPWM, 255 * (1 - exp(-(distR * 100) / 3))); // Vref, Duty Cycle of 100x/255
112 }
113

114 target = 0.61; // [m]
115 i = 0;
116 pL = 0;
117 pR = 0;
118 distL = 0;
119 distR = 0;
120

121 digitalWrite(pinLeftForward, HIGH); // Go clockwise
122 digitalWrite(pinLeftBackward, LOW); // Go clockwise
123 digitalWrite(pinRightForward, HIGH); // Go clockwise
124 digitalWrite(pinRightBackward, LOW); // Go clockwise
125

126 while (i <= 10) {
127 analogWrite(pinLeftPWM, 20*i); // Vref, Duty Cycle of 100x/255
128 analogWrite(pinRightPWM, 20*i); // Vref, Duty Cycle of 100x/255
129 i++;
130 delay(10);
131 }
132

133 while (pL * itL <= target || pR * itR <= target) {
134 distL = target - pL * itL;
135 if (distL < 0) {
136 distL = 0;
137 }
138 distR = target - pR * itR;
139 if (distR < 0) {
140 distR = 0;
141 }
142 analogWrite(pinLeftPWM, 255 * (1 - exp(-(distL * 100) / 3))); // Vref, Duty Cycle of 100x/255
143 analogWrite(pinRightPWM, 255 * (1 - exp(-(distR * 100) / 3))); // Vref, Duty Cycle of 100x/255
144 }
145

146 target = 0.12*3.14; // [m]
147 i = 0;
148 pL = 0;
149 pR = 0;
150 distL = 0;
151 distR = 0;
152

153 digitalWrite(pinLeftForward, HIGH); // Go clockwise
154 digitalWrite(pinLeftBackward, LOW); // Go clockwise
155 digitalWrite(pinRightForward, LOW); // Go clockwise
156 digitalWrite(pinRightBackward, HIGH); // Go clockwise
157

158 while (i <= 10) {
159 analogWrite(pinLeftPWM, 20*i); // Vref, Duty Cycle of 100x/255
160 analogWrite(pinRightPWM, 20*i); // Vref, Duty Cycle of 100x/255
161 i++;
162 delay(10);
163 }
164

16

165 while (pL * itL <= target || pR * itR <= target) {
166 distL = target - pL * itL;
167 if (distL < 0) {
168 distL = 0;
169 }
170 distR = target - pR * itR;
171 if (distR < 0) {
172 distR = 0;
173 }
174 analogWrite(pinLeftPWM, 255 * (1 - exp(-(distL * 100) / 3))); // Vref, Duty Cycle of 100x/255
175 analogWrite(pinRightPWM, 255 * (1 - exp(-(distR * 100) / 3))); // Vref, Duty Cycle of 100x/255
176 }
177

178 digitalWrite(pinLeftForward, LOW); // Go clockwise
179 digitalWrite(pinLeftBackward, LOW); // Go clockwise
180 digitalWrite(pinRightForward, LOW); // Go clockwise
181 digitalWrite(pinRightBackward, LOW); // Go clockwise
182

183 }
184

185 void counterL() {
186 pL++;
187 }
188 void counterR() {
189 pR++;
190 }

The robot comes back to the starting point as we would expect it to. The code used for this section results in a more
accurate path than what was used in 4.A.9. This is expected as the code used in section A did not use a Control Law in
order to maintain wheel travel distance was the same by damping the spin speed.

Interestingly, we notices that between consecutive resets of the motor undergoing the same test that sometimes the
process would run accurately, however other times it would deviate slightly from the expected path and from other
generations. This however can be attributed to motor error and assumptions that we neglected in our models such
as non-ideal resistors, capacitors and IC’s. Similarly, environmental conditions such as the floor texture can lead to
inaccuracies, as this same model deviates more when allowed to run on carpet for example.

IV. Conclusion
With most projects, there is commonly one element of software that must be implemented, as the physical hardware
needed to complete most complex processes are beyond the complexity that is expected to be manually completed. Thus,
software implementation devices such as Arduino’s and Raspberry Pi’s are valuable for most projects. These devices
are very valuable in order to implement a wide range of software.

Devices like Arduino’s are particularly useful for these kind of projects as they can support a wide range of features,
most importantly for this lab being hardware interrupts. Hardware interrupts allow one to interrupt any process in the
software in order to complete a different process. This is used in our project in order to count encoder pulses more
efficiently so that we don’t miss pulses and cause errors in measuring travel distances.

Therefore, it is important to familiarize ourselves with coding in the Arduino IDE and using hardware to implement and
elevate our systems complexity. This lab helped us to better understand Arduino processes, familiarizing ourselves with
its inner workings and understanding processes such as clock cycling. Experiment A leaned towards helping us learn
how to implement hardware onto our board effectively, while Experiment B helped us learn how to implement the code
onto our Arduino board to accomplish mathematical processes for our system. These two Experiments helped us learn
how to use hardware and implement it into our physical system as well as code in C++ languages.

17

	Introduction
	Experiment A
	Exploration Topic: Interrupts
	4.A.2
	4.A.3
	4.A.4
	4.A.5
	4.A.6
	4.A.7
	4.A.8
	4.A.9

	Experiment B
	4.B.2
	4.B.3
	4.B.4
	4.B.5
	4.B.6

	Conclusion

