
University of Colorado - Boulder

CSPB 2400
Computer Systems | Summer 2024

Lab 4: Perf Lab

Sam Walker Hoang Truong

Monday, July 22, 2024



Part 1
Execution Check (40 points)

GitHub Repo Link: Repo Link [https://github.com/cu-cspb-2400-summer-2024/lab4-perflab-
sawa9885]

Screenshot of make test without openmp:

Fig. 1 No OpenMP

Screenshot of make test with openmp:

Fig. 2 OpenMP

1

https://github.com/cu-cspb-2400-summer-2024/lab4-perflab-sawa9885.git


Part 2-i - Loop Order
Loop Order Modification:

Explanation
The modification shown above improves performance by maximizing cache locality and reducing cache misses.

By iterating over the smallest dimension (color planes) in the outermost loop and the largest dimension (width) in the
innermost loop, we ensure that the data accessed within the innermost loop is contiguous in memory, thus making better
use of the CPU cache.

2



Part 2-ii - Strength Reduction
Strength Reduction Modifications:

Explanation
Strength reduction is an optimization technique that replaces an expensive operation with a less costly one. In this

case, we utilize two methods: precomputing the offsets and using addition rather than direct assignment within the
innermost loop, thereby improving performance.

By precomputing the offsets in the array jOffsets, we eliminate the need for multiplication within the innermost
loop.

The first image shows the precomputation of offsets, while the second image illustrates the use of rolling addition
to further reduce computational overhead rather than directly assigning these values to the color 3d array. These
optimizations collectively enhance the performance by minimizing the number of expensive operations within the
innermost loops.

3



Part 2-iii - Code Motion
Code Motion Modification:

Explanation
Code motion is an optimization technique that improves performance by moving invariant computations outside of

loops to reduce redundant calculations. In the example above, we precompute the offsets for the filter indices and store
them in the jOffsets array. By doing this, we eliminate the need for repetitive multiplications within the innermost
loop, thereby reducing the computational overhead. Another simple example is that the original code had filter -> getsize
in the for loop conditional checks and by storing those as a variable at the very beginning we don’t have to call a get
function every time the for loop triggers.

4



Part 2-iv - Loop Unrolling
Loop Unrolling Modification:

Explanation
Loop unrolling is an optimization technique that involves duplicating the loop body multiple times to decrease the

loop overhead and increase the instruction-level parallelism. In this case, we experimented with unrolling the inner
loop by different factors, including more than twice in the inner loop and multiple times in the outer j loop. However,
we found that unrolling the inner loop once, as shown in the code snippet, provided the most effective performance
improvement. By unrolling the inner loop once, we reduce the number of iterations and the overhead associated
with loop control, while maintaining a balance between code size and execution efficiency. This approach effectively
minimizes the computational overhead and enhances the performance of the loop without significantly increasing the
code complexity or memory usage.

5



Part 2-v - Other Modifications
GCC Flag Modification:

OpenMP Modification:

Explanation
Compiler optimization levels control the extent and types of optimizations performed by the compiler. The

optimization levels range from -O0 to -O3:
• -O0: No optimization; this level is the default and focuses on reducing compilation time and ensuring the most

straightforward debugging.
• -O1: Enables basic optimizations that do not require significant compilation time. It improves performance

without substantially increasing the compilation time.
• -O2: Enables further optimizations beyond -O1, including more aggressive code transformations and inlining. It is

a good balance between compilation time and performance improvement.
• -O3: Enables all the optimizations from -O2 and includes more aggressive optimizations like loop unrolling,

vectorization, and function inlining. It focuses on maximizing performance, even if it increases compilation time
and code size.

We choose to use -O3 because it provides the highest level of optimization, focusing on maximizing the performance
of the generated code, which is critical for computationally intensive tasks.

For parallel processing, we use OpenMP, a widely used API for multi-platform shared-memory parallel programming.
The -fopenmp flag enables the OpenMP support in the compiler.

The pragma omp parallel for directive is used to parallelize the execution of loops. It distributes the iterations
of the loop across multiple threads, allowing for concurrent execution and reducing overall runtime. We do not use
the collapse() keyword because it is intended for nested loops where the iterations can be flattened into a single loop.
However, in our case, the parallelization is applied at the outermost loop level, and the structure of the nested loops
does not benefit from collapsing. This approach provides a clear and effective way to utilize multiple threads without
introducing unnecessary complexity.

6


	Part 1
	Execution Check (40 points)
	GitHub Repo Link: Repo Link [https://github.com/cu-cspb-2400-summer-2024/lab4-perflab-sawa9885]
	Screenshot of make test without openmp:
	Screenshot of make test with openmp:

	Part 2-i - Loop Order
	Loop Order Modification:
	Explanation

	Part 2-ii - Strength Reduction
	Strength Reduction Modifications:
	Explanation

	Part 2-iii - Code Motion
	Code Motion Modification:
	Explanation

	Part 2-iv - Loop Unrolling
	Loop Unrolling Modification:
	Explanation

	Part 2-v - Other Modifications
	GCC Flag Modification:
	OpenMP Modification:
	Explanation


