
University of Colorado - Boulder

CSPB 2400
Computer Systems | Summer 2024

Lab 1: Bomblab

Sam Walker Hoang Truong

Monday, June 24, 2024

Part 1
Execution Check (40 points)

GitHub Repo Link: Repo Link [https://github.com/cu-cspb-2400-summer-2024/lab2-bomblab-
sawa9885]

Bomb number and a screenshot of leaderboard:
I solved both bomb 3 and bomb 72. I’m not sure why it says invalid phase 2 for bomb 72 but I figured its ok because

I also have completely solved bomb 3.

Fig. 1 Bomb 3 and 72

1

https://github.com/cu-cspb-2400-summer-2024/lab2-bomblab-sawa9885.git

Part 2-i - Phase 3
General operation of phase 3:

Phase 3 consists of a switch statement depending on the first value and then a simple check following for the second
or even possibly third value. In bomb3 I had d c d input and in bomb72, I simply had d d input. The first input indicates
where the jump table jumps to and the subsequent numbers are checked via hardcoded values into eax.

Jump table assembly explanation:
A jump table is essentially an array of pointers (addresses) to code blocks. Each entry in the jump table corresponds

to a case in the switch statement. In bomb 72 which I have completed more recently the input values range from 0 to 7
which result in different jumps. By running x/10wd 0x5555555571e0 we can begin dissecting the jumps. Performing
x/3i previous address + offset we can explore the exact lines each jump goes to. From there the required value for that
jump is displayed.

2

Part 2-ii - Phase 4
General operation of phase 4:

Phase 4 takes 2 numbers, the first number is passed into a recursive function call. The second number is checked via
hardcoding after the recursive function check is complete.

func4 explanation (What are initial input parameters? How do those parameters change after
each recursion call?):

The initial parameters passed in are rsi, rdi, and rdx. In my case, rdx and rsi are hardcoded values with them being
14 and 0 respectively, however, rdi is the register our first input of phase 4 gets stored to. In each recursive call rdx and
rdi remain unchanged, with rsi being calculated as such 𝑟𝑑𝑥−𝑟𝑠𝑖

2 + 𝑟𝑠𝑖 + 1. Further the new 𝑟𝑠𝑖 − 1 which is simply saved
to rcx is compared with rdi. For the correct solution for bomb72 the we need rcx to be less than rdi twice and then equal
to on the third time. This is exemplified by an input of 13 which yields rsi of 8->12->14 and rcx of 7->11->13. This
follows the characterization of the necessary comparisons by analyzing the parameters of func4 and thus defuses the
bomb.

3

Part 2-iii - Phase 5
General operation of phase 5:

For phase 5, there is an array with 15 different. The value of a specific index is used as the next index. The first
input indicates where in the array we start. The second input number is a hardcoded checked value after the for loop.

The main for loop explanation (what happens in this loop):
The array consists of values between 0 and 15 inclusive and the for loop exits when the value of the array is 15. As

mentioned previously the for loop starts at the index of the array of the first input number. It then loops until it finds 15
by using the value at the index of the previous value. Basically that means that if arr[5]=9 then the next iteration of
the loop will be arr[9]=... The hint mentions that chars could be involved but bomb72 used ints so I can’t comment
on that. To successfully exit the loop as well as the next condition avoiding the bomb explosion it is necessary to run
through the entire array. To solve this we can inspect the array values with (gdb) x/60x $rsi. Which displays all 15 array
values because 15*4=60. From there we can build our array and start from the value 15 and work backwards to find the
starting value.

4

Part 2-iv - Phase 6
General operation of phase 6:

Phase 6 takes in 6 numbers 1-6 non repeating and traverses a linked list nodes in that order.

What are the condition checks for the 6 inputs in phase 6:
The condition checks check that there is 6 inputs and not less. Another condition check checks to make sure the

inputs aren’t greater than 6 or less than 1 i.e. the values must be 1-6. The last check makes sure there aren’t 2 repeating
numbers so we need to input 6 unique numbers 1-6.

Show the linked list values and corresponding address:
Node 1 address is hardcoded in rdx and from there we can view the 4w expressions which show what I will call the

id, the value, and the next node address. I don’t know what the fourth column is it seems unused.

Fig. 2 Linked list values and corresponding address.

The condition for solving phase 6 was finding out that each id as I call needs to be greater than the previous one. And
because we choose the traversal order we simply order them based on smallest to largest id. For bomb 72, this example,
the correct solution is 6 2 3 1 4 5 which lines up with the id numbers since 6 is the smallest and 5 has the largest.

5

Part 3
Pick 1 of the difficulties/challenges you have dealt with in any of the phases and explain shortly
(200 words) your process of debugging/finding the solution:

In phase 6 I often got very confused on why I was jumping all throughout the program and I was struggling to
understand the importance and reasoning behind most of the jumps. My initial thought was trying to understand
everything line by line, however, that strategy wasn’t working well for phase 6. Instead I finally realized it was easier to
determine general understandings by placing breakpoints directly after the loops. For example I could explore how
registers changed after it did its whole loop behaviour for checking the value and could then realize the bigger picture
that it used a loop just for checking and it may not be important to understand every little detail of the entire program.
This also made it much faster to debug because I wasn’t getting caught up in the loops that run 50 times but rather
the ones that run just a few important times. In all of the phases I experienced issues with understanding when to
uses x/s vs x/4wx vs x/wx and such. I often felt defeated when it would say stuff like that memory location cannot be
accessed, however, I realized throughout the process that my confusion early on was corrected just by doing it over and
over throughout the whole assignment. I was focused on learning the theory behind certain operations when the actual
application of those operations was much more use case specific and I could only learn that by using them thousands of
times.

6

	Part 1
	Execution Check (40 points)
	GitHub Repo Link: Repo Link [https://github.com/cu-cspb-2400-summer-2024/lab2-bomblab-sawa9885]
	Bomb number and a screenshot of leaderboard:

	Part 2-i - Phase 3
	General operation of phase 3:
	Jump table assembly explanation:

	Part 2-ii - Phase 4
	General operation of phase 4:
	func4 explanation (What are initial input parameters? How do those parameters change after each recursion call?):

	Part 2-iii - Phase 5
	General operation of phase 5:
	The main for loop explanation (what happens in this loop):

	Part 2-iv - Phase 6
	General operation of phase 6:
	What are the condition checks for the 6 inputs in phase 6:
	Show the linked list values and corresponding address:

	Part 3
	Pick 1 of the difficulties/challenges you have dealt with in any of the phases and explain shortly (200 words) your process of debugging/finding the solution:

