
University of Colorado - Boulder

ECEN 4840
Independent Study | Summer 2024

Final Report
Software-Defined Instruments

ESP32-S3 ADC Characteristics

Sam Walker Eric Bogatin

Friday, August 16, 2024

I would like to thank Eric Bogatin for being such an amazing mentor throughout the entire summer despite his busy
schedule. I would also like to thank Sam McDiarmid-Sterling and Jonah Yunes for their help throughout this project.



ESP32
The device being used for adc characterization tests outlined in this report is the Adafruit QT Py ESP32-S3 No

PSRAM or simply QT Py/ESP32 for short. The QT Py requires some specific setup and maintenence to ensure proper
working order. We used python scripts as our foundation for testing and analysis. Because of this it was necessary to
create a communication protocol over which the ESP32 scripts could communicate with the python scripts.

Setup

To successfully upload code to the ESP32 there are some necessary steps to be taken.
1) Add the board to the list of additional boards available. URL can be found on Adafruit’s website. Install the

board support package once the URL is added. Here’s a step by step guide by espressif: EspressIf Guide
2) When uploading code to the ESP32S3 certain configuration settings must be chosen. These settings under the

tools header should match the following for code upload to succeed each time you attempt it.

Figure 1: ESP32 Config

3) To upload code, hold down the ‘boot’ button on the ESP32 and while holding ‘boot’ down press ‘reset’, then
release both. This should put the device into programming mode. Now ensure the COM port under tools->port
is selected to the ESP32.

4) Now to open the serial monitor (ctrl+shift+m) and receive data it may be necessary to press ‘reset’ on the QT Py
and reselect a new COM port.

Custom Communication Protocol

In order to communicate between our python and esp32 scripts it was necessary to create a protocol of which
messages could be sent. Essentially the format involved sending strings through the serial line in this format:
INPUT:FUNCTION:PARAMETER from python to the esp32 and OUTPUT:VALUE from the esp32 to the python
script.

1

https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html


Figure 2: ESP32 Loop Function - This function was always waiting for commands to come into the esp32, unless it was
currently running a previous command.

Figure 3: ESP32 Command Parsing - This function would interpret the INPUT:FUNCTION:PARAMETER and properly
call the desired function with the desired parameter.

2



Figure 4: Python Output - These were the two functions used for receiving commands. The receive output function
continuously receives an output until a certain ’timeout’ amount of time passes in which the output stream has ended.
wait for output makes use of recursion to continuously check for output making sure it catches just one output signal.

Figure 5: Python Send - This function simply formats the function name and parameter as an input string to be sent to
the esp32.

Hardware Testing

There was 3 main hardware tests using just ESP32 and not python. We wanted to confirm our streaming rate
and sample rate of the adc and esp32. To do this we created seperate specific scripts that strictly test the sample and
streaming rate. The results are more thoroughly described and shown later in the ’Results’ section.

3



Figure 6: Raw Sample Rate

Figure 7: Read Sample Rate

Both RawSampleRate and ReadSampleRate have the same test principle. They start a timer, load the analog value
into the buffer and repeat that for a number of samples (1000). They differ in the library they use, RawSampleRate uses
adc.h whereas ReadSampleRate uses Arduino.h. Because of small library differences RawSampleRate outperforms
ReadSampleRate.

4



Figure 8: Streaming Rate

The streaming rate test is very similar to the sample rate tests, except that it prints a test message to the serial port.
The interesting thing about the streaming test is that we determined using Serial.Begin(baudRate); has no impact to
these results. That line of code is essentially ignored and the fastest baud rate is automatically chosen.

5



Software-Defined Instruments
Software-defined instruments are virtual instruments implemented through software to perform various measurements

and analyses. These instruments are typically more flexible and cost-effective than traditional hardware instruments, as
they allow for easy updates and customization. Below is a description of four key software-defined instruments utilized
in this context: Scope, Strip Chart, RMS, and DC Calibration.

Scope

The software-defined oscilloscope (Scope) emulates the functions of a traditional hardware oscilloscope. It takes
data as fast as possible, stores it in the buffer and then spits out the entire buffer over a serial connection to anything
whether its a plot of voltage vs time or even just saving it to a csv. The flexibility of a software-defined scope also
enables advanced functionalities such as automatic measurements, and the application of mathematical operations
directly to the captured waveforms.

Figure 9: Scope Code

Strip Chart

A software-defined Strip Chart recorder is designed to record data over time and display it in a continuous, scrolling
format. Unlike a traditional oscilloscope, which typically captures and displays data in short bursts, the Strip Chart
is ideal for long-term monitoring of slowly changing signals. It is particularly useful for tracking trends, observing
long-duration events, and logging data for subsequent analysis. The Strip Chart’s software implementation allows for
customization of the time axis, and data scaling, making it a versatile tool for both live monitoring and retrospective
analysis. The strip chart function allows for averaging so that it shows the most accurate data possible because the
streaming rate is slower than the sample rate.

Figure 10: Strip Chart Code

6



Figure 11: Strip Chart Graph Code

Graphing the strip chart is unique in that it is constantly updating and ’sliding’ as the time scale remains constant but
the length of the data is always increasing. To do this it saves a list of the past ’timerange’ seconds data and also keeps
the entire dataset. From there it continuously plots the newest data while maintaining a csv of the entire dataset. There
are a lot of optimizations that we wanted to make to this function that I will talk more about in the ’What Next?’ section
of the report.

RMS

The software-defined RMS (Root Mean Square) instrument is used for calculating the AC RMS value of a signal,
which is a measure of its error. By averaging multiple samples into one, we are able to reduce the noise of the signal,
this does not infinitely help because other factors such as polynomial drift take over the normal distributed noise that
had been averaged out. This leads to one of our main questions during this research: At what point is averaging no
longer helpful? I.E. What is the fastest rate that we can receive the most accurate information? Because averaging slows
down the output of data, but makes it much more accurate.

Consider the situation where maxpoints is 1000 and step is 100. To calculate the RMS values we take max points
value and always take the RMS of the size of step. For example, in this case we take the first 100 points of the 1000
generated points, and we average every 1 consecutive point (effectively not averaging) and then take the RMS. Next we
take 200 points and average every 2 consecutive points and then calculate the RMS... all the way until we have used the
entire dataset.

7



Figure 12: RMS Code

Figure 13: AC RMS - Noise

Our initial results on the ESP32 were very promising, as shown above, the RMS value or noise decreases as we
average more points together. In fact, it decreases by a factor of the square root of the number of points averaged. For
example, by increasing the number of points by a factor of 100 (from 1 to 100) we see that the RMS value decreases by
a factor of 10 (from roughly 3m to .3m). This is as expected and is really cool to see. However, we were confused about
the periodic and strange behavior at the end. To better understand this we synthesized data which is shown in the next
graph.

8



Figure 14: Synthesized Noise Results

For our synthesized dataset we introduced random noise as well as a small drift. This resulted in the data being
centered around a linear curve. By using our RMS function on this data we got the graph above. This showed us that the
strange periodic results we had got earlier were as expected because in this graph the drift takes over the rms plot and in
our original plot on the esp32’s data the drift also took over it just wasn’t as nominal of a signal.

9



Figure 15: Upgraded Noise

We made one last upgrade to the RMS plotting in order to make the graph look cleaner which was showing only 10
points per decade and ran it with more data to produce the above graph. The end result showing us that around 1000
points is the optimal amount to average on the esp32.

DC Calibration

The software-defined DC Calibration instrument is crucial for ensuring the accuracy, precision and linearity of
measurements in a system. It allows for precise calibration of DC signals, correcting any offsets or deviations from
the expected values. The software implementation of DC Calibration enables automated and repeatable calibration
procedures, enhancing the overall efficiency and consistency of the measurement process.

10



Figure 16: Linearity

Seeing this linearity curve was alarming because this shows that the ESP32 does not have an incredibly linear step
and it even has a correction near 2.5 Volts. I will talk more about what could be causing this and possible solutions in
the ’What Next?’ section of the report.

Figure 17: Error Graph with Multiple Curves

After running the linearity test on the same ESP32 6 times and calculating the error of each one we could see that
this was a recurring problem and a problem of accuracy rather than precision.

11



Figure 18: Polynomial Fit

One way that this calibration tool could be very useful is by fitting a polynomial curve to the error and using the
inverse function to correct any measurements taken by the instrument. Above is an example of fitting a 4th degree
polynomial to my error. However, I expect if my instrument did not have that strange correction it would require a much
lower degree polynomial in order to approximate the error.

12



Important Figure Results

Figures of Merit Table

Figure of Merit Specified Value Measured Value Calculated Value Units
Bit Level 12 12 - LSB
Internal Buffer 520 - - kB
Sample Rate 100 32-38 - kSPS
Streaming Rate - 17 0.886 kSPS
Linearity (DNL) ±4 - - LSB
Linearity (INL) ±8 - - LSB
Range (Atten0) 950 950 - mV
Range (Atten1) 1250 1250 - mV
Range (Atten2) 1750 1750 - mV
Range (Atten3) 3100 3100 - mV
LSB Voltage (Atten0) - - 0.231 mV
LSB Voltage (Atten1) - - 0.305 mV
LSB Voltage (Atten2) - - 0.427 mV
LSB Voltage (Atten3) - - 0.757 mV
Accuracy (Atten3) - - 5 %
Noise (Atten3) - 2.96 - mV
ENOB (Atten3) - 10 - LSB

Table 1: Figures of Merit

Bit Level

Refers to the resolution of the analog-to-digital converter (ADC), indicating the number of bits used to represent the
analog input. A higher bit level allows for finer granularity and more precise digital representation of the analog signal.
The datasheet specifies the bit level to be 12 meaning that the adc outputs values from 0-4095 because 212 = 4096.

Internal Buffer

This is the amount of memory available within the system to temporarily store data before processing or transferring
it, helping to manage the flow of data and avoid bottlenecks. The ESP32 datasheet references 520kB internal buffer.
With some calculations we can determine how much data we can expect to be able to store.

• 520 kB to bytes: There are 1024 bytes per kB so three is 532,480 bytes in 520kB
• Integers: 32 bit integers take 4 bytes each, resulting in a capacity of 133,120 integers.
• Floats: Floats are 64 bit or 8 bytes, resulting in a capacity of 66,560 floats.

Sample Rate

Indicates the number of samples taken per second by the ADC, determining how frequently the analog signal
is converted to a digital value. A higher sample rate captures more detail of the analog signal. The datasheet
mentions 100kSPS, however, I was never able to get a sample rate that high. Using the Arduino.h library along with
analogRead(pin) results in around 32kSPS, whereas using the adc.h library along with ADC1getraw results in around
38kSPS.

Streaming Rate

Refers to the rate at which data can be continuously transferred or processed, often limited by the communication
interface or the system’s data handling capabilities. To test the streaming rate we can display a test message to the

13



serial port and see how long it takes to display 1000 test samples. This method resulted in a streaming rate of 17kSPS.
However, calculating the streaming rate yields:

Figure 19: Streaming Rate Calculation

Linearity - Figure 16

Describes how closely the output of the ADC matches a straight line across its range. It includes Differential
Nonlinearity (DNL) and Integral Nonlinearity (INL), which indicate deviations in step sizes and overall linearity,
respectively.

Range

Defines the span of input voltages that the ADC can accurately convert into digital values. This can vary depending
on attenuation settings or reference voltages. Despite being listed on the datasheet, the range can be tested very easily by
changing the input signal until the result from reading the analog value reaches its max.

LSB Voltage

The voltage difference represented by the Least Significant Bit (LSB) of the ADC, calculated as the total input range
divided by the number of discrete levels. This value can be calculated simply by following the equation below for atten3
where n is the bit level.

𝑟𝑎𝑛𝑔𝑒

2𝑛
=

3.1
212

= 0.757𝑚𝑉 (1)

Accuracy - Figure 17

Measures how close the ADC’s output is to the true value of the input signal, taking into account all sources of error,
including offset, gain, and linearity errors. To determine the accuracy we use our linearity error plot along with the
equation below.

100 ∗ 𝑒𝑟𝑟𝑜𝑟

𝑟𝑎𝑛𝑔𝑒
= 100 ∗ 0.151

3.1
= 4.8 ≈ 5% (2)

14



Noise - Figure 13

Refers to the random variations or disturbances in the ADC’s output that are not related to the input signal, often
quantified as the noise level in LSBs or volts. To find the noise of the ESP32’s adc we calculated the ac rms (standard
deviation) of 1000 points, this resulted in 2.96mV.√︂

1
𝑁

∑︁
(𝑉− < 𝑉 >)2 (3)

(1) Where N is the number of samples in the rms calculation, V is the voltage of each sample and <V> is the mean of all
voltages.

ENOB

Effective Number of Bits (ENOB) is a measure of the actual resolution of the ADC after accounting for all sources
of error, including noise and distortion, reflecting the ADC’s true performance. To determine ENOB we can use this
formula log2

𝑟𝑎𝑛𝑔𝑒

𝑛𝑜𝑖𝑠𝑒
. For atten3 this results in an ENOB of 10.032, which we will truncate to 10.

15



What Next?
While a significant amount of progress was made over the summer, working only 10-15 hours per week on such an

extensive project made it difficult to accomplish everything I had initially planned. As a result, there are numerous
upgrades and next steps I have in mind if this project were to continue. However, with the onset of my senior year, I will
not be able to continue working on this project in the upcoming fall. Below, I outline some of the key areas for potential
future development.

Missing Figures of Merit Measurements

One of the primary goals moving forward would be to complete the confirmation of all the figures of merit listed in
the figures of merit table. Ensuring that each of these metrics is accurately measured and validated would allow for
comprehensive testing and comparison against the values specified in the datasheets. Additionally, it would be highly
beneficial to develop standardized tests that could compare different ESP32 units with each other, as well as with other
microcontroller platforms. Such comparisons would provide valuable insights into the performance consistency and
variability of the ESP32, especially in relation to critical parameters like sample rate, noise levels, and accuracy.

Strip Chart Improvements

There are several enhancements that could significantly improve the functionality and performance of the strip chart.
Firstly, implementing multi-threading for data acquisition and plotting would allow these tasks to run on separate CPU
threads, greatly increasing the strip chart’s ability to handle higher frequency data. Currently, the strip chart is limited to
displaying low-frequency data in the 1-10 Hz range. By parallelizing these processes, it would be possible to achieve
real-time plotting of higher frequency signals.

Additional improvements could include updating the CSV file dynamically as data is acquired, rather than waiting
until the acquisition is complete. This would provide more immediate feedback and reduce data loss risks. Allowing the
user to adjust the averaging window in real-time would also enable on-the-fly optimization of the data display, making it
easier to identify trends or anomalies as they occur. Furthermore, dynamically adjusting the time scale based on the
frequency of the incoming data would ensure that the graph remains relevant and informative, regardless of changes in
the signal frequency.

RMS Improvements

One of the main challenges with the current RMS function is the need to gather all data points before calculating the
RMS value. This approach delays the feedback that the function provides and prevents real-time visualization of the
data. A significant improvement would be to enable real-time plotting of the RMS values as the data is gathered. This
would allow the test to automatically populate the graph while running, providing immediate insights into the signal
characteristics.

Another enhancement involves plotting the RMS values against time rather than just the number of points. This
time-based approach could help to smooth out anomalies and provide a clearer representation of the signal’s behavior
over the duration of the test. By implementing these improvements, the RMS function would become a more powerful
tool for analyzing dynamic signals in real time.

DC Calibration Next Steps

The next logical step for improving DC calibration would be to test additional ESP32 units. Unfortunately, I ran out
of time to conduct extensive testing, but it would be fascinating to see if other ESP32 units exhibit the same anomalies
as the one I tested. Understanding whether these anomalies are consistent across multiple units could provide valuable
insights into the inherent characteristics of the ESP32’s ADC.

Another avenue for improvement involves adjusting the ESP32’s configuration settings during setup to enhance the
accuracy of DC measurements. Exploring different configuration options could lead to better calibration results and
more reliable data. The most significant upgrade to the DC calibration process would involve using the inverse of a
polynomial fit to the error curve. By applying this correction algorithm, it would be possible to automatically correct for
any systematic errors in the ESP32’s ADC measurements, leading to more precise and accurate data acquisition.

16



Takeaways
Overall, I am very satisfied with the work I put into this project and I thought that it was very much worth my time

and I learned a lot from doing it.

Working with ESP32

Throughout this project, I gained a deeper understanding of the intricacies involved in working with microcontrollers,
particularly the ESP32. While I began with a solid foundation in Arduino, my knowledge of ADCs (Analog-to-Digital
Converters) was minimal, and I had little experience with the ESP32. This project served as a hands-on learning
opportunity, allowing me to explore the nuanced behavior of these devices.

I delved into the specifics of how ADCs function within the ESP32, learning about their resolution, accuracy, and
the challenges associated with noise and sampling rates. Through experimentation and debugging, I gained insights
into optimizing ADC performance, such as managing signal noise and understanding the trade-offs between speed and
precision. This experience not only enhanced my technical skills but also provided me with a better understanding of
how to leverage the ESP32’s capabilities to improve system performance in real-world applications, preparing me to
tackle more advanced microcontroller-based projects in the future.

Project Planning

This project presented a unique challenge in that it was highly free-flowing, which initially led me to underestimate
the importance of structured project planning and management. As the project progressed, I realized the critical role
that efficient planning plays in guiding a project’s success. Without a clear plan, I often found myself sidetracked by
tasks that, while interesting, were not the most beneficial to the project’s overall objectives. I also spent time polishing
aspects of the project that were still in the prototyping stage, which was not the best use of time or resources. For
example, I spent over 10 hours working on my own serial plotter extension for vscode after looking on the extension
site for 5 minutes. After those 10 hours, I spent 1 more minute on the extension store and found one that was much
better than mine. Another distraction I had was with the communication protocol I created. I originally made it overly
complicated and super modular accepting multiple parameters and multiple functions. This was all unnecessary for the
scope of this project.

The value of weekly meetings became evident as they provided the necessary structure and accountability to keep
the project on track. These meetings helped me prioritize tasks, set achievable goals, and make informed decisions about
where to focus my efforts. Through this process, I developed a greater appreciation for the skills of project planning and
time management. I learned the importance of setting clear milestones, regularly assessing progress, and being flexible
enough to adapt the plan as new challenges or opportunities arose.

This experience has taught me that effective project planning is not just about creating a roadmap at the beginning
but involves ongoing evaluation and adjustment. By the end of the project, I felt more confident in my ability to manage
complex projects, ensuring that my efforts are aligned with the project’s goals and timelines. This is a skill that I will
carry forward into future projects, both in academic and professional settings.

17


	ESP32
	Setup
	Custom Communication Protocol
	Hardware Testing

	Software-Defined Instruments
	Scope
	Strip Chart
	RMS
	DC Calibration

	What Next?
	Missing Figures of Merit Measurements
	Strip Chart Improvements
	RMS Improvements
	DC Calibration Next Steps

	Takeaways
	Working with ESP32
	Project Planning


